Eawag: Swiss Federal Institute of Aquatic Science and Technology

ETH zürich **DUSYS**

Modelling Aquatic Ecosystems Course 701-0426-00

Nele Schuwirth

ETH Zürich, Department of Environmental Systems Sciences Eawag, Swiss Federal Institute of Aquatic Science and Technology

- Introduction, principles of modelling environmental systems, mass balance in a mixed reactor, process table notation, simple lake plankton model Exercise: R, ecosim-package, simple lake plankton model Exercise: lake phytoplankton-zooplankton model
- 2. Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
- 3. Biological processes in lakes
- 4. Physical processes in lakes, mass balance in multi-box and continuous systems Exercise: structured, biogeochemical-ecological lake model Assignments: build your own model by implementing model extensions
- 5. Physical processes in in rivers, bacterial growth, river model for benthic populations Exercise: river model for benthic populations, nutrients and oxygen
- 6. Uncertainty, Parameter estimation, Stochasticity Exercise: parameter estimation Exercise: stochasticity, uncertainty
- 7. Existing models and applications in research and practice, examples and case studies, preparation of the oral exam, feedback

- Review exercise 2 and clarify open questions
- Acquire knowledge in process stoichiometry to bridge between ecological and biogeochemical processes.
- Learn to calculate stoichiometric coefficients
 from chemical substance notation (chapter 4.3.1)
 and parameterized elemental mass fractions (chapter 4.3.2).

chapter 11.2

Process	Subs	tances / Orga	anisms	Rate here units of
	HPO4	ALG	ZOO	the state
	[gP/m ³]	[gDM/m ³]	[gDM/m ³]	 variables in the model
Growth of algae	$-\alpha_{\rm P,ALG}$	1		$ ho_{ m gro,ALG}$
Death of algae		-1		$ ho_{ m death,ALG}$
Growth of zooplankton Death of zooplankton		$-\frac{1}{Y_{\rm ZOO}}$	1 —1	$ ho_{ m gro,ZOO}$ $ ho_{ m death,ZOO}$

Rate	Rate expression
$ ho_{ m gro,ALG}$	$k_{\text{gro,ALG},T_0} \cdot \exp\left(\beta_{\text{ALG}}(T-T_0)\right) \cdot \frac{1}{\lambda h} \log\left(\frac{K_I + I_0}{K_I + I_0 \exp(-\lambda h)}\right)$
	$\cdot \frac{C_{\mathrm{HPO}_{4}^{2-}}}{K_{\mathrm{HPO}_{4}^{2-},\mathrm{ALG}} + C_{\mathrm{HPO}_{4}^{2-}}} \cdot C_{\mathrm{ALG}}$
$ ho_{ m death,ALG}$	$k_{ m death,ALG}C_{ m ALG}$
$ ho_{ m gro,ZOO}$	$k_{\text{gro},\text{ZOO},T_0} \cdot \exp\left(\beta_{\text{ZOO}}(T-T_0)\right) \cdot C_{\text{ALG}} C_{\text{ZOO}}$
$ ho_{\mathrm{death,ZOO}}$	$k_{ m death,ZOO}C_{ m ZOO}$

Review Exercise 2: Model results

ETH zürich eawag

Results for constant environmental conditions

Results for periodic environmental conditions

ETH zürich eawag

Do you have questions?

- 1. Are the algae concentrations controlled bottom-up (by phosphate limitation) or top-down (by grazing of zooplankton)?
- 2. What is the reason for oscillating concentrations under constant driving forces?
- 3. What is the difference in the oscillations between the simulation with constant and periodic driving forces?
- 4. What are the main deficits of the model compared to a real lake?
- 5. What is your expectation regarding the response of the model to the change in each parameter, does the result match your expectation and can you explain the observed changes?

ETH zürich

ETH zürich

t

ETH zürich

t

t

10

ETH zürich

0.05

0 8

0.02

0.01

0^{.0}

C.HPO4

11

ETH zürich

12

ETH zürich

C.HPO4

ETH zürich

C.HPO4

t

t

ETH zürich

C.Z00

ETH zürich

t

16

ETH zürich

ETH zürich eawag

Process i		Sub	ostance	es j		Rate
	\mathbf{s}_1	\mathbf{S}_2	S_3	•••	${\sf S}_{n_{ m s}}$	
p_1	$ u_{11} $	ν_{12}	ν_{13}	•••	$ u_{1n_{\mathrm{s}}} $	$ ho_1$
p_2	$ u_{21}$	ν_{22}	ν_{23}	•••	$ u_{2n_{ m s}}$	$ ho_2$
÷	÷	÷	÷	·	÷	÷
$p_{n_{\mathrm{p}}}$	$ u_{n_{\mathrm{p}}1}$	$\nu_{n_{\mathrm{p}}2}$	$ u_{n_{\mathrm{p}}3}$	•••	$ u_{n_{\mathrm{p}}n_{\mathrm{s}}}$	$ ho_{n_{ m p}}$
	1	$r_j = \sum_{i=1}^{n}$	$\sum_{j=1}^{n_{\mathrm{p}}} \nu_{ij}$	$ ho_i$		

How to derive the stoichiometric coefficients v_{ij} ?

Stoichiometry: Ingredients for 1 cake?

Best recipe: https://tinyurl.com/Schoggikuchen

ETH zürich

eawag

process	Chocolate	Egg	Butter	Sugar	Cake	rate
	[g]	[no.]	[g]	[g]	[no.]	[min ⁻¹]
baking a cake	-300	-5	-100	-100	+1	1/25 (at 180 °C)

ETH zürich

Stoichiometry

chapter 4.3.1

3 ways to derive stoichiometric coefficients:

- Chemical substance notation
- Parameterized elemental mass fractions
- General solution

Bevor we start...

Conversion from mole to mass:

$$n[\text{mol}] = \frac{m[\text{g}]}{M[\text{g/mol}]}$$

Molar mass M (atomic weight)

H: 1 g/mol C: 12 g/mol N: 14 g/mol O: 16 g/mol P: 31 g/mol

Chemical Substance Notation

Process			Substance	anisms				
	NH_4^+	NO_3^-	HPO_4^{2-}	O_2	ALG	Z00	POM	here just units of measurement of
	mol	mol	mol	mol	gDM	gDM	gDM	the different substances
Growth of ALG,NH4	?		?	?	1			_
Growth of ALG,NO3		?	?	?	1			
Respiration of ALG	?		?	?	-1			
Death of ALG					-1		1	
Growth of ZOO	?		?	?	?	1	?	
Respiration of ZOO	?		?	?		-1		
Death of ZOO						-1	1	

Additional substances for calculation of the stoichiometric coefficients: $\rm HCO_3^-,~\rm H^+,~\rm H_2O$

ETH zürich

ETH zürich eawag

1. Example: Growth of algae

Typical composition of marine algae (Redfield, 1958)

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4)_1 = C_{106}H_{263}O_{110}N_{16}P$

Total "molar" mass:

$$M = 106 \cdot 12 \frac{gC}{"mol"} + 263 \frac{gH}{"mol"} + 110 \cdot 16 \frac{gO}{"mol"} + 16 \cdot 14 \frac{gN}{"mol"} + 31 \frac{gP}{"mol"} = 3550 \frac{gDM}{"mol"}$$

ETH zürich eawag

1. Example: Growth of algae with nitrate:

 $a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$ $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P} + f \operatorname{O}_{2}$

6 unknowns (*a*, *b*, *c*, *d*, *e*, *f*)

equations for the conservation of "mass": ?

1. Example: Growth of algae with nitrate: $a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$ $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P}^{+} + f \operatorname{O}_{2}$

6 unknowns (*a*, *b*, *c*, *d*, *e*, *f*)

equations for the conservation of "mass": for C, H, O, N, P and charge

C: $a \cdot 1 = 1 \cdot 106 \rightarrow a = 106$

Hzürich

eawag

1. Example: Growth of algae with nitrate:

$$a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$$

 $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P}^{+} + f \operatorname{O}_{2}$

6 unknowns (*a*, *b*, *c*, *d*, *e*, *f*)

equations for the conservation of "mass": for C, H, O, N, P and charge

C: $a \cdot 1 = 1 \cdot 106 \rightarrow a = 106$

N: $b \cdot 1 = 1 \cdot 16 \rightarrow b = 16$

ETH zürich

eawag

1. Example: Growth of algae with nitrate:

 $a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2^{-}} + d \operatorname{H}^{+} + e \operatorname{H}_{2}O$

6 unknowns (*a*, *b*, *c*, *d*, *e*, *f*)

equations for the conservation of "mass": for C, H, O, N, P and charge

C: $a \cdot 1 = 1 \cdot 106 \rightarrow a = 106$

N: $b \cdot 1 = 1 \cdot 16 \rightarrow b = 16$

P: $c \cdot 1 = 1 \cdot 1 \rightarrow c = 1$

Hzürich

etweig

 \rightarrow C₁₀₆H₂₆₃O₁₁₀N₁₆P + f O₂

ETH zürich **eawag**

1. Example: Growth of algae with nitrate:

 $a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$ $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P} + f \operatorname{O}_{2}$

6 unknowns (*a*, *b*, *c*, *d*, *e*, *f*)

equations for the conservation of "mass": for C, H, O, N, P and charge

$$a = 106, b = 16, c = 1$$

H: $106 \cdot 1 + 1 \cdot 1 + d \cdot 1 + e \cdot 2 = 1 \cdot 263$,
O: $106 \cdot 3 + 16 \cdot 3 + 1 \cdot 4 + e \cdot 1 = 1 \cdot 110 + f \cdot 2$,
e: $106 \cdot (-1) + 16 \cdot (-1) + 1 \cdot (-2) + d \cdot (+1) = 0$.
$$d = 124 \quad e = 16 \qquad f = 138$$

1. Example: Growth of algae with nitrate:

 $a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$ $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P} + f \operatorname{O}_{2}$

a = 106, *b* = 16, *c* = 1, *d* = 124, *e* = 16, *f* = 138

 $106 \text{ HCO}_{3}^{-} + 16 \text{ NO}_{3}^{-} + \text{HPO}_{4}^{2-} + 124 \text{ H}^{+} + 16 \text{ H}_{2}\text{O}$ $\rightarrow \text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 138 \text{ O}_{2}$

$$M_{ALG} = 3550 \frac{\text{gDM}}{\text{``mol''}}$$

ETH zürich

eawag

Stoichiometric coefficients for growth of algae:

$\nu_{\rm gro,ALG,NO3,HCO_{2}}$	- =	$-\frac{106}{2550} \frac{\text{molHCO}_3^-}{\text{mDM}}$
gro,		3550 gDM
$\nu_{\rm gro,ALG,NO3~NO_3^-}$	=	$-\frac{16}{3550} \frac{\text{molNO}_3}{\text{gDM}}$
	_	1molHPO_4^{2-}
$\nu_{\rm gro,ALG,NO3\ HPO_4^2}$		$-\overline{3550}$ gDM
$\nu_{ m gro,ALG,NO3~H^+}$	=	$-\frac{124}{3550} \frac{\mathrm{molH^+}}{\mathrm{gDM}}$
$\nu_{ m gro,ALG,NO3~H_2O}$	_	$-\frac{16}{3550} \frac{\mathrm{molH}_2\mathrm{O}}{\mathrm{gDM}}$
$\nu_{ m gro,ALG,NO3}$ ALG	=	$1 \frac{\text{gDM}}{\text{gDM}}$
$\nu_{ m gro,ALG,NO3~O_2}$	=	$\frac{138}{3550} \frac{\text{molO}_2}{\text{gDM}}$

Pen and paper exercise task 1

Derive the stoichiometry for the process

"growth of algae with ammonium as nitrogen source"

by calculating the mass balances for the elements and charge.

Assume the Redfield composition for algal biomass (eq. 4.33 and 4.34).

 $a \operatorname{HCO}_{3}^{-} + b \operatorname{NH}_{4}^{+} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$ $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P} + f \operatorname{O}_{2}$

FIHzürich

Process	Substances / Organisms						
	${\sf NH}^+_4$ mol	NO_3^- mol	$^{\mathrm{HPO}_4^{2-}}_{\mathrm{mol}}$	${\sf O}_2$ mol	ALG gDM	ZOO gDM	POM gDM
Gro. ALG,NH4	$-\frac{16}{3550}$		$-\frac{1}{3550}$	$\frac{106}{3550}$	1		
Gro. ALG,NO3		$-\frac{16}{3550}$	$-\frac{1}{3550}$	$\frac{138}{3550}$	1		

Similarly for algal growth with ammonium:

 $\begin{array}{l} 106 \, \mathrm{HCO}_{3}^{-} + 16 \, \mathrm{NH}_{4}^{+} + \mathrm{HPO}_{4}^{2-} + 92 \, \mathrm{H}^{+} \\ \\ \rightarrow \mathrm{C}_{106} \mathrm{H}_{263} \mathrm{O}_{110} \mathrm{N}_{16} \mathrm{P} + 106 \, \mathrm{O}_{2} \end{array}$

Respiration:

$$\begin{split} \mathrm{C_{106}H_{263}O_{110}N_{16}P} + 106\,\mathrm{O_2} \\ & \rightarrow 106\,\mathrm{HCO_3^-} + 16\,\mathrm{NH_4^+} + \mathrm{HPO_4^{2-}} + 92\,\mathrm{H^+} \end{split}$$

Death:

 $\rm C_{106}H_{263}O_{110}N_{16}P \rightarrow C_{106}H_{263}O_{110}N_{16}P$

ETH zürich

eawag

Process			Substance	s / Orga	anisms		
	NH_4^+	NO_3^-	HPO_4^{2-}	O_2	ALG	ZOO	POM
	mol	mol	mol	mol	gDМ	gDМ	gDМ
Growth of ALG,NH4	?		?	?	1		
Growth of ALG,NO3		?	?	?	1		
Respiration of ALG	?		?	?	-1		
Death of ALG					-1		1
Growth of ZOO	?		?	?	?	1	?
Respiration of ZOO	?		?	?		-1	
Death of ZOO						-1	1

 \rightarrow how many unknowns?

Additional substances for calculation of the stoichiometric coefficients: $\rm HCO_3^-,~\rm H^+,~\rm H_2O$

ETH zürich eawag

Zooplankton Growth:

8 unknown stoichiometric coefficients

- 6 mass balance equations
- 2 additional constraints required:

Fraction of zooplankton biomass produced per algal biomass consumed (yield): $Y_{\rm ZOO}$

Fraction of dead particles produced (excretion + sloppy feeding) per algal biomass consumed: $f_{
m e}$

The fraction of algal biomass respired is then: $f_{\rm r} = 1 - Y_{\rm ZOO} - f_{\rm e}$

FIHzürich

Pawag

Process			Substance	s / Organisms			
	${\sf NH}_4^+$ mol	$\frac{NO_3^-}{mol}$	$^{\rm HPO}_4^{2-}$ mol	O ₂ mol	ALG gDM	ZOO gDM	POM gDM
Gro. ALG,NH4	$-\frac{16}{3550}$		$-\frac{1}{3550}$	$\frac{106}{3550}$	1		
Gro. ALG,NO3		$-\frac{16}{3550}$	$-\frac{1}{3550}$	$\frac{138}{3550}$	1		
Resp. ALG	$\frac{16}{3550}$		$\frac{1}{3550}$	$-\frac{106}{3550}$	-1		
Death ALG					-1		1
Growth ZOO	$\frac{f_{\rm r}}{Y_{\rm ZOO}} \frac{16}{3550}$		$\frac{f_{\rm r}}{Y_{\rm ZOO}} \frac{1}{3550}$	$-\frac{f_{\rm r}}{Y_{\rm ZOO}} \frac{106}{3550}$	$-\frac{1}{Y_{\rm ZOO}}$	1	$rac{f_{ m e}}{Y_{ m ZOO}}$
Resp. ZOO	$\frac{16}{3550}$		$\frac{1}{3550}$	$-\frac{106}{3550}$		-1	
Death ZOO						-1	1

ETH zürich

Chemical Substance Notation:

Quite some handwork!

If composition changes: redo the calculation!

 $\rightarrow\,$ instead of fixed composition use parameters for elemental mass fractions

chapter 4.3.2

3 ways to derive stoichiometric coefficients:

- Chemical substance notation
- Parameterized elemental mass fractions
- General solution

Extended Process Table Notation

Processes i		Sul	ostance	es j		Rates
	s_1	s_2	S_3	•••	${\sf S}_{n_{ m s}}$	
p_1	ν_{11}	ν_{12}	ν_{13}	•••	$\nu_{1n_{\rm s}}$	ρ_1
p_2	ν_{21}	ν_{22}	ν_{23}	•••	$\nu_{2n_{\rm s}}$	$ ho_2$
÷	÷	÷	÷	·	:	÷
$p_{n_{\mathrm{P}}}$	$\nu_{n_{\mathrm{p}}1}$	$\nu_{n_{\mathrm{p}}2}$	$\nu_{n_{\mathrm{p}}3}$	•••	$\nu_{n_{\rm p}n_{\rm s}}$	$ ho_{n_{ m p}}$
Elements k						
e_1	α_{11}	α_{12}	α_{13}	•••	$\alpha_{1n_{\mathbf{s}}}$	
e_2	α_{21}	α_{22}	α_{23}	•••	$\alpha_{2n_{\mathbf{s}}}$	
÷	÷	÷	÷	·	:	
$e_{n_{\mathbf{e}}}$	$\alpha_{n_{\rm e}1}$	$\alpha_{n_{\rm e}2}$	$\alpha_{n_{\rm e}3}$	•••	$\alpha_{n_{\rm e}n_{\rm s}}$	

 ν_{ij} : stoich. coeff. = relative transf. rate of substance j in proc. i α_{kj} : mass fraction of element k on substance j $\nu_{ij}\alpha_{kj}$: relative transf. rate of element k contained in subst. j

$Processes\ i$		Substances j					
	s_1	s_2	S_3	•••	${\sf S}_{n_{ m s}}$		
p_1	ν_{11}	ν_{12}	ν_{13}	•••	$\nu_{1n_{\rm s}}$	$ ho_1$	
p_2	ν_{21}	ν_{22}	$ u_{23}$	•••	$\nu_{2n_{\rm s}}$	$ ho_2$	
÷	÷	÷	÷	·	:	÷	
$p_{n_{\mathrm{p}}}$	$\nu_{n_{\mathrm{p}}1}$	$\nu_{n_{\rm p}2}$	$\nu_{n_{\mathrm{p}}3}$	•••	$\nu_{n_{\rm p}n_{\rm s}}$	$ ho_{n_{ m p}}$	
Elements k							
e_1	α_{11}	α_{12}	α_{13}	•••	$\alpha_{1n_{\mathbf{s}}}$		
e_2	α_{21}	α_{22}	α_{23}	• • •	$\alpha_{2n_{\mathbf{s}}}$		
÷	÷	÷	÷	·	:		
$e_{n_{\mathbf{e}}}$	$\alpha_{n_{\rm e}1}$	$\alpha_{n_{\rm e}2}$	$\alpha_{n_{\rm e}3}$	•••	$\alpha_{n_{\rm e}n_{\rm s}}$		

Mass conservation for element k in process i:

$$\sum_{j} \nu_{ij} \alpha_{kj} = 0$$

ETH zürich eawag Example

Model 1: Growth and respiration of algae.

			Substances / Organisms <code>j</code>				
			NH_4^+	HPO_4^{2-}	ALG		
			gN	gP	gDM		
Processes i	Growth of ALG,N	JH4	?	?	1		
	Respiration of AL	G	?	?	-1		
Elements k	Ν	gN	1	0	$lpha_{ m NALG}$		
	Ρ	gP	0	1	$lpha_{ ext{PALG}}$		

$$\sum_{j} \nu_{ij} \alpha_{kj} = 0$$

Example

Growth of algae:

N conservation:

$$\underbrace{\nu_{\text{gro,ALG,NH4 NH4}} \cdot 1}_{\text{NH}_{4}^{+}} + \underbrace{\nu_{\text{gro,ALG,NH4 HPO4}} \cdot 0}_{\text{HPO}_{4}^{2-}} + \underbrace{1 \cdot \alpha_{\text{N,ALG}}}_{\text{ALG}} = 0$$

P conservation:

$$\underbrace{\nu_{\text{gro,ALG,NH4 NH4}} \cdot 0}_{\text{NH}_{4}^{+}} + \underbrace{\nu_{\text{gro,ALG,NH4 HPO4}} \cdot 1}_{\text{HPO}_{4}^{2-}} + \underbrace{1 \cdot \alpha_{\text{P,ALG}}}_{\text{ALG}} = 0$$

 $\rightarrow \nu_{\rm gro,ALG,NH4~NH4} = -\alpha_{\rm N,ALG} \;,\; \nu_{\rm gro,ALG,NH4~HPO4} = -\alpha_{\rm P,ALG}$

$$\sum_{j} \nu_{ij} \alpha_{kj} = 0$$

ETH zürich

eawag

Example

Model 1: Growth and respiration of algae.

Process	Substances / Organisms					
	NH_4^+	HPO_4^{2-}	ALG			
Element	gN	gP	gDM			
Growth of ALG,NH4	$-\alpha_{ m N,ALG}$	$-\alpha_{\mathrm{P,ALG}}$	1			
Respiration of ALG	$lpha_{ m N,ALG}$	$lpha_{ m P,ALG}$	-1			
N gN	1	0	$lpha_{ m NALG}$			
P gP	0	1	$lpha_{ ext{PALG}}$			

Parameterized Mass Fractions

Process	Substances / Organisms							
	NH_4^+	NO_3^-	HPO_4^{2-}	O_2	ALG	ZOO	POM	
	mol	mol	mol	mol	gDM	gDM	gDM	
Growth of ALG,NH4	?		?	?	1			
Growth of ALG,NO3		?	?	?	1			
Respiration of ALG	?		?	?	-1			
Death of ALG					-1		1	
Growth of ZOO	?		?	?	?	1	?	
Respiration of ZOO	?		?	?		-1		
Death of ZOO						-1	1	

Additional substances for calculation of the stoichiometric coefficients: $\rm HCO_3^-,~\rm H^+,~\rm H_2O$

Mass balance equations for C,H,O,N,P and charge

Instead of assuming a fixed chemical composition (e.g. Redfield:)

$$\rm C_{106}H_{263}O_{110}N_{16}P$$

use parameterized mass fractions:

$$\mathbf{C}_{\alpha_{\mathrm{C},j}/12}\mathbf{H}_{\alpha_{\mathrm{H},j}}\mathbf{O}_{\alpha_{\mathrm{O},j}/16}\mathbf{N}_{\alpha_{\mathrm{N},j}/14}\mathbf{P}_{\alpha_{\mathrm{P},j}/31}$$

with:

$$\alpha_{\mathrm{C},j} + \alpha_{\mathrm{H},j} + \alpha_{\mathrm{O},j} + \alpha_{\mathrm{N},j} + \alpha_{\mathrm{P},j} = 1$$

ETH zürich

eawag

ETH zürich eawag

m[g] = n[mol] * M[g/mol]

Redfield composition:

 $\alpha_{\rm C,ALG}^{\rm Redfield} = \frac{106 \cdot 12}{3550} \; \frac{\rm gC}{\rm gDM} \; \approx 0.36 \; \frac{\rm gC}{\rm gDM}$ $\alpha_{\rm H,ALG}^{\rm Redfield} = \frac{263}{3550} \; \frac{{\sf gH}}{{\sf gDM}} \qquad \approx 0.07 \; \frac{{\sf gH}}{{\sf gDM}}$ $\alpha_{\rm O,ALG}^{\rm Redfield} = \frac{110 \cdot 16}{3550} \frac{\rm gO}{\rm gDM} \approx 0.50 \frac{\rm gO}{\rm gDM}$ $\alpha_{\mathrm{N,ALG}}^{\mathrm{Redfield}} = \frac{16 \cdot 14}{3550} \frac{\mathrm{gN}}{\mathrm{gDM}} \approx 0.06 \frac{\mathrm{gN}}{\mathrm{gDM}}$ $\alpha_{\rm P,ALG}^{\rm Redfield} = \frac{1 \cdot 31}{3550} \; \frac{{\sf gP}}{{\sf gDM}} \qquad \approx 0.01 \; \frac{{\sf gP}}{{\sf gDM}}$

$$a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$$

 $\rightarrow \operatorname{C}_{106}\operatorname{H}_{263}\operatorname{O}_{110}\operatorname{N}_{16}\operatorname{P} + f \operatorname{O}_{2}$

Setting up equation for algal growth with unknown coefficients:

$$a \operatorname{HCO}_{3}^{-} + b \operatorname{NO}_{3}^{-} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$$

$$\rightarrow \operatorname{C}_{\alpha_{\mathrm{C,ALG}}/12} \operatorname{H}_{\alpha_{\mathrm{H,ALG}}} \operatorname{O}_{\alpha_{\mathrm{O,ALG}}/16} \operatorname{N}_{\alpha_{\mathrm{N,ALG}}/14} \operatorname{P}_{\alpha_{\mathrm{P,ALG}}/31} + f \operatorname{O}_{2}$$

Conservation of C: $a = \frac{\alpha_{C,ALG}}{12}$ Conservation of N: $b = \frac{\alpha_{N,ALG}}{14}$ Conservation of P: $c = \frac{\alpha_{P,ALG}}{31}$

$$\frac{\alpha_{\mathrm{C,ALG}}}{12} \operatorname{HCO}_{3}^{-} + \frac{\alpha_{\mathrm{N,ALG}}}{14} \operatorname{NO}_{3}^{-} + \frac{\alpha_{\mathrm{P,ALG}}}{31} \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2} \operatorname{O}_{4}^{-} + d \operatorname{H}^{+} + e \operatorname{H}_{2$$

Conservation of H, O and charge:

$$\begin{array}{l} \mbox{H:} & \frac{\alpha_{\rm C,ALG}}{12} \cdot 1 + \frac{\alpha_{\rm P,ALG}}{31} \cdot 1 + d \cdot 1 + e \cdot 2 = 1 \cdot \alpha_{\rm H,ALG} \\ \hline \mbox{O:} & \frac{\alpha_{\rm C,ALG}}{12} \cdot 3 + \frac{\alpha_{\rm N,ALG}}{14} \cdot 3 + \frac{\alpha_{\rm P,ALG}}{31} \cdot 4 + e \cdot 1 = 1 \cdot \frac{\alpha_{\rm O,ALG}}{16} + f \cdot 2 \\ \hline \mbox{charge:} & \frac{\alpha_{\rm C,ALG}}{12} \cdot (-1) + \frac{\alpha_{\rm N,ALG}}{14} \cdot (-1) + \frac{\alpha_{\rm P,ALG}}{31} \cdot (-2) + d \cdot (+1) = 0 \end{array}$$

ETH zürich eawag

$$d = \frac{\alpha_{\rm C,ALG}}{12} + \frac{\alpha_{\rm N,ALG}}{14} + \frac{2 \alpha_{\rm P,ALG}}{31}$$
$$e = \frac{\alpha_{\rm H,ALG}}{2} - \frac{\alpha_{\rm C,ALG}}{12} - \frac{\alpha_{\rm N,ALG}}{28} - \frac{3 \alpha_{\rm P,ALG}}{62}$$
$$f = \frac{\alpha_{\rm C,ALG}}{12} + \frac{\alpha_{\rm H,ALG}}{4} - \frac{\alpha_{\rm O,ALG}}{32} + \frac{5 \alpha_{\rm N,ALG}}{56} + \frac{5 \alpha_{\rm P,ALG}}{124}$$

ETHzürich

Growth of algae:

$$\begin{aligned} \frac{\alpha_{\mathrm{C,ALG}}}{12} \mathrm{HCO}_{3}^{-} + \frac{\alpha_{\mathrm{N,ALG}}}{14} \mathrm{NO}_{3}^{-} + \frac{\alpha_{\mathrm{P,ALG}}}{31} \mathrm{HPO}_{4}^{2-} \\ &+ \left(\frac{\alpha_{\mathrm{C,ALG}}}{12} + \frac{\alpha_{\mathrm{N,ALG}}}{14} + \frac{2 \alpha_{\mathrm{P,ALG}}}{31}\right) \mathrm{H}^{+} \\ &+ \left(\frac{\alpha_{\mathrm{H,ALG}}}{2} - \frac{\alpha_{\mathrm{C,ALG}}}{12} - \frac{\alpha_{\mathrm{N,ALG}}}{28} - \frac{3 \alpha_{\mathrm{P,ALG}}}{62}\right) \mathrm{H}_{2}\mathrm{O} \\ &\to \mathrm{C}_{\alpha_{\mathrm{C,ALG}}/12} \mathrm{H}_{\alpha_{\mathrm{H,ALG}}} \mathrm{O}_{\alpha_{\mathrm{O,ALG}}/16} \mathrm{N}_{\alpha_{\mathrm{N,ALG}}/14} \mathrm{P}_{\alpha_{\mathrm{P,ALG}}/31} \\ &+ \left(\frac{\alpha_{\mathrm{C,ALG}}}{12} + \frac{\alpha_{\mathrm{H,ALG}}}{4} - \frac{\alpha_{\mathrm{O,ALG}}}{32} + \frac{5 \alpha_{\mathrm{N,ALG}}}{56} + \frac{5 \alpha_{\mathrm{P,ALG}}}{124}\right) \mathrm{O}_{2} \end{aligned}$$

ETHzürich

Pen and paper exercise task 2

Derive the stoichiometry of the process "growth of algae with ammonium as the nitrogen source" assuming an arbitrary composition of algal biomass considering the mass fractions $\alpha_{\rm C}$, $\alpha_{\rm H}$, $\alpha_{\rm O}$, $\alpha_{\rm N}$, and $\alpha_{\rm P}$ of the elements C, H, O, N and P.

$$a \operatorname{HCO}_{3}^{-} + b \operatorname{NH}_{4}^{+} + c \operatorname{HPO}_{4}^{2-} + d \operatorname{H}^{+} + e \operatorname{H}_{2}\operatorname{O}$$

$$\rightarrow \operatorname{C}_{\alpha_{\mathrm{C,ALG}}/12} \operatorname{H}_{\alpha_{\mathrm{H,ALG}}} \operatorname{O}_{\alpha_{\mathrm{O,ALG}}/16} \operatorname{N}_{\alpha_{\mathrm{N,ALG}}/14} \operatorname{P}_{\alpha_{\mathrm{P,ALG}}/31} + f \operatorname{O}_{2}$$

ETH zürich

eawag

Parameterized Mass Fractions:

Changes in composition are now easy to handle, just change the numerical values of the parameters.

What about adding additional elements?

The equations must be revised.

This is a laborious process.

Is there a general solution to this process?

- Introduction, principles of modelling environmental systems, mass balance in a mixed reactor, process table notation, simple lake plankton model Exercise: R, ecosim-package, simple lake plankton model Exercise: lake phytoplankton-zooplankton model
- 2. Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
- 3. Biological processes in lakes
- 4. Physical processes in lakes, mass balance in multi-box and continuous systems Exercise: structured, biogeochemical-ecological lake model Assignments: build your own model by implementing model extensions
- 5. Physical processes in in rivers, bacterial growth, river model for benthic populations Exercise: river model for benthic populations, nutrients and oxygen
- 6. Uncertainty, Parameter estimation, Stochasticity Exercise: parameter estimation Exercise: stochasticity, uncertainty
- 7. Existing models and applications in research and practice, examples and case studies, preparation of the oral exam, feedback

→ Swiss Army Knife of Linear Algebra

- 1. Find out what the Swiss Army Knife of Linear Algebra is and how it roughly works
- 2. Read chapter 4.3.3 (general solution)
- 3. Read chapter 15 (Stoichcalc package)
- 4. Think about your open questions

