Eawag: Swiss Federal Institute of Aquatic Science and Technology

# **ETH** zürich **DUSYS**



## Modelling Aquatic Ecosystems Course 701-0426-00

**Nele Schuwirth** 

ETH Zürich, Department of Environmental Systems Sciences Eawag, Swiss Federal Institute of Aquatic Science and Technology

- ETH zürich eawag aquatic research 80000
- Introduction, principles of modelling environmental systems, mass balance in a mixed reactor, process table notation, simple lake plankton model Exercise: R, ecosim-package, simple lake plankton model Exercise: lake phytoplankton-zooplankton model
- 2. Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
- 3. Biological processes in lakes
- 4. Physical processes in lakes, mass balance in multi-box and continuous systems Exercise: structured, biogeochemical-ecological lake model Assignments: build your own model by implementing model extensions
- 5. Physical processes in in rivers, bacterial growth, river model for benthic populations Exercise: river model for benthic populations, nutrients and oxygen
- 6. Stochasticity, uncertainty, parameter estimation Exercise: uncertainty, stochasticity
- 7. Existing models and applications in research and practice, examples and case studies, preparation of the oral exam, feedback





- Review exercise 4 (chapter 11.4)
- Learn how to model the growth of bacteria (chapter 8.8)
- Know the most important transport and mixing processes in rivers and how to implement them in a model (chapter 6.1.2)
- (Preview River Models (chapter 11.5-11.6))
- Transdisciplinary thoughts on Flow Mike (Dr. Koul) Azkoul

## **Transport and Mixing in Lakes**

eawag aquatic research 8000

**ETH** zürich



https://sensors-eawag.ch/greifensee/add\_to\_html.php?head=head&nav=nav&dst=Temperature\_Profile.html

## **Transport and Mixing in Lakes**

Eawag - Greifensee Monitoring



https://sensors-eawag.ch/greifensee/add\_to\_html.php?head=head&nav=nav&dst=Temperature\_Profile.html

O2 [mg/L]

#### ETH zürich eawag aquatic research 80000

eawag

Base Model 11.4









Base Model 11.4





8

| <b>ETH</b> zürich              |
|--------------------------------|
| eawag<br>aquatic research 8000 |

| Process                           | Substances / Organisms |                   |            |       |                          |     |                                              |                                          |                |                |  |  |  |
|-----------------------------------|------------------------|-------------------|------------|-------|--------------------------|-----|----------------------------------------------|------------------------------------------|----------------|----------------|--|--|--|
|                                   | $\mathrm{HPO}_4^{2-}$  | $\mathrm{NH}_4^+$ | $NO_3^-$   | $O_2$ | ALG                      | ZOO | POMD                                         | POMI                                     | SPOMD          | SPOMI          |  |  |  |
|                                   | $_{ m gP}$             | $\mathrm{gN}$     | $_{ m gN}$ | gO    | gDM                      | gDM | $\mathrm{gDM}$                               | $\mathrm{gDM}$                           | $\mathrm{gDM}$ | $\mathrm{gDM}$ |  |  |  |
| Growth of algae $NO_3^-$          | _                      |                   | _          | +     | 1                        |     |                                              |                                          |                |                |  |  |  |
| Growth of algae $\mathrm{NH}_4^+$ | _                      | _                 |            | +     | 1                        |     |                                              |                                          |                |                |  |  |  |
| Respiration of algae              | +                      | +                 |            | _     | -1                       |     |                                              |                                          |                |                |  |  |  |
| Death of algae                    | 0/+                    | 0/+               |            | 0/+   | -1                       |     | $(1 - f_{\rm I})Y_{\rm ALG, death}$          | $f_{\rm I}Y_{\rm ALG, death}$            |                |                |  |  |  |
| Growth of zooplankton             | +                      | +                 |            | _     | $\frac{-1}{Y_{\rm ZOO}}$ | 1   | $\frac{(1-f_{\rm I})f_{\rm e}}{Y_{\rm ZOO}}$ | $\frac{f_{\rm I}f_{\rm e}}{Y_{\rm ZOO}}$ |                |                |  |  |  |
| Respiration of zoopl.             | +                      | +                 |            | _     |                          | -1  |                                              |                                          |                |                |  |  |  |
| Death of zooplankton              | 0/+                    | 0/+               |            | 0/+   |                          | -1  | $(1 - f_{\rm I}) Y_{\rm ZOO, death}$         | $f_{\rm I}Y_{\rm ZOO, death}$            |                |                |  |  |  |
| Nitrification                     |                        | -1                | +          | —     |                          |     |                                              |                                          |                |                |  |  |  |
| Oxic mineral. of org. part.       | +                      | +                 |            | —     |                          |     | -1                                           |                                          |                |                |  |  |  |
| Ox. min. of org. part. in sed.    | +                      | +                 |            | _     |                          |     |                                              |                                          | -1             |                |  |  |  |
| Anox. min. of org. part. in sed.  | +                      | +                 | _          |       |                          |     |                                              |                                          | -1             |                |  |  |  |
| Sed. of deg. org. part.           |                        |                   |            |       |                          |     | -1                                           |                                          | 1              |                |  |  |  |
| Sed. of inert org. part.          |                        |                   |            |       |                          |     |                                              | -1                                       |                | 1              |  |  |  |

### **Review Exercise 4**





## **Review Exercise 4**

ETH zürich eawag aguatic research 80000





Do you have any questions about exercise 4 (or other topics)?

#### Questions to think about:

- Why is it important that some stoichiometric coefficients are defined as 0/+ ?
- How is the metalimnion represented by the model?
- Look at the process rates of mineralization in the sediment.
   Why are they different than in chapter 8.5?
- Look at the mass balance for P and N. If there is a difference between input and output + accumulation, where does it come from? Hint: Have a look at the stoichiometric coefficients for anoxic mineralization

**H**zürich

| <b>ETH</b> zürich              |
|--------------------------------|
| eawag<br>aquatic research 0000 |

| Process                           | Substances / Organisms |                   |                   |       |                          |     |                                              |                                          |                |                |
|-----------------------------------|------------------------|-------------------|-------------------|-------|--------------------------|-----|----------------------------------------------|------------------------------------------|----------------|----------------|
|                                   | $\mathrm{HPO}_4^{2-}$  | $\mathrm{NH}_4^+$ | $\mathrm{NO}_3^-$ | $O_2$ | ALG                      | ZOO | POMD                                         | POMI                                     | SPOMD          | SPOMI          |
|                                   | gP                     | gN                | $_{ m gN}$        | gO    | gDM                      | gDM | $\mathrm{gDM}$                               | $\mathrm{gDM}$                           | $\mathrm{gDM}$ | $\mathrm{gDM}$ |
| Growth of algae $NO_3^-$          | _                      |                   | _                 | +     | 1                        |     |                                              |                                          |                |                |
| Growth of algae $\mathrm{NH}_4^+$ | _                      | _                 |                   | +     | 1                        |     |                                              |                                          |                |                |
| Respiration of algae              | +                      | +                 |                   | _     | -1                       |     |                                              |                                          |                |                |
| Death of algae                    | 0/+                    | 0/+               |                   | 0/+   | -1                       |     | $(1 - f_{\rm I})Y_{\rm ALG, death}$          | $f_{ m I}Y_{ m ALG,death}$               |                |                |
| Growth of zooplankton             | +                      | +                 |                   | _     | $\frac{-1}{Y_{\rm ZOO}}$ | 1   | $\frac{(1-f_{\rm I})f_{\rm e}}{Y_{\rm ZOO}}$ | $\frac{f_{\rm I}f_{\rm e}}{Y_{\rm ZOO}}$ |                |                |
| Respiration of zoopl.             | +                      | +                 |                   | _     | _                        | -1  |                                              |                                          |                |                |
| Death of zooplankton              | 0/+                    | 0/+               |                   | 0/+   | ]                        | -1  | $(1 - f_{\rm I}) Y_{\rm ZOO, death}$         | $f_{\rm I}Y_{\rm ZOO, death}$            |                |                |
| Nitrification                     |                        | -1                | +                 | _     |                          |     |                                              |                                          |                |                |
| Oxic mineral. of org. part.       | +                      | +                 |                   | _     |                          |     | -1                                           |                                          |                |                |
| Ox. min. of org. part. in sed.    | +                      | +                 |                   | _     |                          |     |                                              |                                          | -1             |                |
| Anox. min. of org. part. in sed.  | +                      | +                 | _                 |       |                          |     |                                              |                                          | -1             |                |
| Sed. of deg. org. part.           |                        |                   |                   |       |                          |     | -1                                           |                                          | 1              |                |
| Sed. of inert org. part.          |                        |                   |                   |       |                          |     |                                              | -1                                       |                | 1              |

#### ETH zürich eawag aguatic research 8000

#### Questions to think about:

• How is the metalimnion represented by the model?

Look at the process rates of mineralization in the sediment.
 Why are they different than in chapter 8.5?

chapter 8.5

$$\rho_{\text{miner,ox,POM}} = k_{\text{miner,ox,POM},T_0} \cdot \exp\left(\beta_{\text{BAC}}(T-T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{miner}} + C_{\text{O}_2}} \cdot C_{\text{POM}}$$
$$\rho_{\text{miner,anox,POM}} = k_{\text{miner,anox,POM},T_0} \cdot \exp\left(\beta_{\text{BAC}}(T-T_0)\right) \cdot \frac{K_{\text{O}_2,\text{miner}} + C_{\text{O}_2}}{K_{\text{O}_2,\text{miner}} + C_{\text{O}_2}} \cdot \frac{C_{\text{NO}_3^-}}{K_{\text{NO}_3^-,\text{miner}} + C_{\text{NO}_3^-}} \cdot C_{\text{POM}}$$

#### Model 11.4

$$\rho_{\text{miner,ox,SPOMD}} \begin{vmatrix} k_{\text{miner,ox,SPOMD},T_{0}} \cdot \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{miner}} + C_{\text{O}_{2}}} \cdot \frac{D_{\text{SPOMD}}}{K_{\text{SPOM,miner,sed}} + D_{\text{SPOMD}}} \\ \rho_{\text{miner,anox,SPOMD}} \end{vmatrix} \\ k_{\text{miner,anox,SPOMD},T_{0}} \cdot \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{NO}_{2}^{-},\text{miner}} + C_{\text{NO}_{2}^{-}}} \cdot \left(\frac{D_{\text{SPOMD}}}{K_{\text{SPOM,miner,sed}} + D_{\text{SPOMD}}}\right)^{2}$$

see p. 186f



 Look at the mass balance for P and N. If there is a difference between input and output + accumulation, where does it come from? *Hint*: Have a look at the stoichiometric coefficients for anoxic mineralization

|                           | Flux                         | Substances                                              | Phosphorus $(t/a)$ | Nitrogen $(t/a)$ |
|---------------------------|------------------------------|---------------------------------------------------------|--------------------|------------------|
|                           | Input                        | $HPO_4^{2-}, NO_3^-$                                    | 12.6               | 158              |
| ·                         | Output                       | $\mathrm{HPO}_4^{2-}, \mathrm{NO}_3^-, \mathrm{NH}_4^+$ | 9.3                | 127              |
|                           |                              | ALG, ZOO, POMD, POMI                                    | 1.2                | 11.5             |
| Accumulation              |                              | $HPO_4^{2-}, NO_3^-, NH_4^+$                            | 1.2                | -7.4             |
| difference                | e in<br>rations or densities | ALG, ZOO, POMD, POMI                                    | 0.0                | 0.1              |
| between the end and start |                              | SPOMD                                                   | 0.0                | 0.2              |
| of the si                 | mulations                    | SPOMI                                                   | 1.0                | 8.6              |
|                           | Loss                         | Denitrification of $NO_3^-$                             | 0.0                | 18.0             |

 Look at the mass balance for P and N. If there is a difference between input and output + accumulation, where does it come from? *Hint*: Have a look at the stoichiometric coefficients for anoxic mineralization

| Process       |                   | Rate              |               |               |                    |                      |                            |                |                           |
|---------------|-------------------|-------------------|---------------|---------------|--------------------|----------------------|----------------------------|----------------|---------------------------|
|               | $\mathrm{NH}_4^+$ | $\mathrm{NO}_3^-$ | $N_2$         | $HPO_4^{2-}$  | $\mathrm{HCO}_3^-$ | $\mathrm{H}^+$       | $\mathrm{H}_{2}\mathrm{O}$ | POM            |                           |
|               | gN                | m gN              | $\mathrm{gN}$ | $\mathrm{gP}$ | $\mathbf{gC}$      | $\operatorname{mol}$ | $\operatorname{mol}$       | $\mathrm{gDM}$ |                           |
| Anoxic miner. | +                 | —                 | +             | +             | +                  | ?                    | ?                          | -1             | $ ho_{ m miner,anox,POM}$ |
|               |                   |                   | <b></b>       |               |                    |                      |                            |                |                           |

Table 8.6: Process table of anoxic mineralization.

| <pre>&gt; print(round(nu,3))</pre> |        |        |       |        |        |        |        |        |       |       |        |        |        |        |
|------------------------------------|--------|--------|-------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|
|                                    | C.NH4  | C.NO3  | C.N2  | C.HPO4 | C.HCO3 | C.02   | C.H    | с.Н2О  | C.ALG | C.Z00 | C.POMD | D.POMD | C.POMI | D.POMI |
| gro.ALG.NH4                        | -0.060 | 0.000  | 0.000 | -0.005 | -0.365 | 0.937  | -0.026 | 0.002  | 1     | 0     | 0.000  | 0      | 0.000  | 0      |
| gro.ALG.NO3                        | 0.000  | -0.060 | 0.000 | -0.005 | -0.365 | 1.211  | -0.035 | -0.002 | 1     | 0     | 0.000  | 0      | 0.000  | 0      |
| resp.ALG                           | 0.060  | 0.000  | 0.000 | 0.005  | 0.365  | -0.937 | 0.026  | -0.002 | -1    | 0     | 0.000  | 0      | 0.000  | 0      |
| death.ALG                          | 0.017  | 0.000  | 0.000 | 0.000  | 0.027  | 0.018  | 0.001  | 0.006  | -1    | 0     | 0.571  | 0      | 0.143  | 0      |
| gro.ZOO                            | 0.180  | 0.000  | 0.000 | 0.008  | 0.992  | -2.417 | 0.070  | 0.003  | - 5   | 1     | 0.800  | 0      | 0.200  | 0      |
| resp.ZOO                           | 0.060  | 0.000  | 0.000 | 0.010  | 0.360  | -0.930 | 0.026  | -0.002 | 0     | -1    | 0.000  | 0      | 0.000  | 0      |
| death.ZOO                          | 0.014  | 0.000  | 0.000 | 0.005  | 0.000  | 0.088  | -0.001 | 0.007  | 0     | -1    | 0.609  | 0      | 0.152  | 0      |
| nitri                              | -1.000 | 1.000  | 0.000 | 0.000  | 0.000  | -4.571 | 0.143  | 0.071  | 0     | 0     | 0.000  | 0      | 0.000  | 0      |
| miner.ox.POM                       | 0.060  | 0.000  | 0.000 | 0.007  | 0.473  | -1.338 | 0.036  | -0.011 | 0     | 0     | -1.000 | 0      | 0.000  | 0      |
| miner.ox.POM.sed                   | 0.060  | 0.000  | 0.000 | 0.007  | 0.473  | -1.338 | 0.036  | -0.011 | 0     | 0     | 0.000  | -1     | 0.000  | 0      |
| miner.anox.POM.sed                 | 0.060  | -0.468 | 0.468 | 0.007  | 0.473  | 0.000  | 0.002  | 0.006  | 0     | 0     | 0.000  | -1     | 0.000  | 0      |
| sed.POMD                           | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0     | 0     | -1.000 | 1      | 0.000  | 0      |
| sed.POMI                           | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0     | 0     | 0.000  | 0      | -1.000 | 1      |

#### Sensitivity Analysis



#### Sensitivity Analysis



#### Sensitivity Analysis







## **Benthic Foodweb**





## **Benthic Foodweb**





Heterotrophic organisms, such as bacteria and fungi are responsible for the decomposition of organic material.

So far, this was only considered implicitly when modelling mineralization.

We will now describe the overall process of mineralization of organic particles as **hydrolysis** of the particles to dissolved organic matter, **growth of heterotrophic bacteria**, and finally **death and respiration of the bacteria**.

FHzürich

eawag

| energy so    | ource  | electron do    | onor    | carbon source  |         |  |  |  |
|--------------|--------|----------------|---------|----------------|---------|--|--|--|
| light:       | photo- | organic comp.: | organo- | organic comp.: | hetero- |  |  |  |
| redox proc.: | chemo- | inorg. comp.:  | litho-  | inorg. comp.:  | auto-   |  |  |  |

Algae and macrophytes: photolithoautotrophic

Heterotrophic bacteria:

Nitrifiers:

chemoorganoheterotrophic

chemolithoautotrophic

You:

?

Also mixotrophic organisms exist:



ciliates



sea slug



carnivorous plants



spotted salamander

#### Stoichiometry:

| Process        | Substances / Organisms |          |       |              |           |       |       |        |                        |     | Rate                      |
|----------------|------------------------|----------|-------|--------------|-----------|-------|-------|--------|------------------------|-----|---------------------------|
|                | $NH_4^+$               | $NO_3^-$ | $N_2$ | $+PO_4^{2-}$ | $HCO_3^-$ | $O_2$ | $H^+$ | $H_2O$ | DOM                    | HET |                           |
|                | gN                     | gŇ       | gN    | gP¯          | gC        | gO    | mol   | mol    | g                      | gDM |                           |
| Oxgro. HET NH4 | ?                      |          |       | ?            | +         | _     | ?     | ?      | $-\frac{1}{Y_{\rm H}}$ | 1   | $ ho_{ m gro,HET,ox,NH4}$ |
| Oxgro. HET NO3 |                        | ?        |       | ?            | +         | _     | ?     | ?      | $-\frac{1}{Y_{\rm H}}$ | 1   | $ ho_{ m gro,HET,ox,NO3}$ |
| Anoxgro. HET   |                        | _        | +     | ?            | +         |       | ?     | ?      | $-\frac{1}{Y_{\rm H}}$ | 1   | $ ho_{ m gro,HET,anox}$   |

#### **Constraints:**

 $\nu_{\rm gro, HET, ox, NH4 \, HET} + \nu_{\rm gro, HET, ox, NH4 \, DOM} Y_{\rm HET} = 0$ 

 $\nu_{\text{gro,HET,ox,NO3 HET}} + \nu_{\text{gro,HET,ox,NO3 DOM}}Y_{\text{HET}} = 0$  $\nu_{\text{gro,HET,anox,NH4 HET}} + \nu_{\text{gro,HET,anox,NH4 DOM}}Y_{\text{HET}} = 0$ 

#### Process rates for oxic growth:

$$\rho_{\rm gro, HET, ox, NH4} = k_{\rm gro, HET, ox} \cdot \exp\left(\beta_{\rm BAC}(T-T_0)\right) \left[ \cdot \frac{p_{\rm NH4, HET}C_{\rm NH4}}{p_{\rm NH4, HET}C_{\rm NH4} + C_{\rm NO3}} \right]$$
$$\cdot \min\left(\frac{C_{\rm DOM}}{K_{\rm DOM, HET} + C_{\rm DOM}}, \frac{C_{\rm O2}}{K_{\rm O2, HET} + C_{\rm O2}}, \left[\frac{C_{\rm HPO4}}{K_{\rm HPO4, HET} + C_{\rm HPO4}}\right], \left[\frac{C_{\rm NH4} + C_{\rm NO3}}{K_{\rm N, HET} + C_{\rm NH4} + C_{\rm NO3}}\right]\right) \cdot C_{\rm HET}$$
$$\rho_{\rm gro, HET, ox, NO3} = k_{\rm gro, HET, ox} \cdot \exp\left(\beta_{\rm BAC}(T-T_0)\right) \left[\cdot \frac{C_{\rm NO3}}{p_{\rm NH4, HET}C_{\rm NH4} + C_{\rm NO3}}\right]$$
$$\cdot \min\left(\frac{C_{\rm DOM}}{K_{\rm DOM, HET} + C_{\rm DOM}}, \frac{C_{\rm O2}}{K_{\rm O2, HET} + C_{\rm O2}}, \left[\frac{C_{\rm HPO4}}{K_{\rm HPO4, HET} + C_{\rm HPO4}}\right], \left[\frac{C_{\rm NH4} + C_{\rm NO3}}{K_{\rm O2, HET} + C_{\rm O2}}, \left[\frac{C_{\rm HPO4}}{K_{\rm HPO4, HET} + C_{\rm HPO4}}\right], \left[\frac{C_{\rm NH4} + C_{\rm NO3}}{K_{\rm N, HET} + C_{\rm NH4} + C_{\rm NO3}}\right]\right) \cdot C_{\rm HET}$$

**ETH** zürich

eawag

#### Process rates for anoxic growth:

$$\rho_{\text{gro,HET,anox}} = k_{\text{gro,HET,anox}} \cdot \exp\left(\beta_{\text{BAC}}(T - T_0)\right) \cdot \frac{K_{\text{O2,HET}}}{K_{\text{O2,HET}} + C_{\text{O2}}}$$
$$\cdot \min\left(\frac{C_{\text{DOM}}}{K_{\text{DOM,HET}} + C_{\text{DOM}}}, \frac{C_{\text{NO3}}}{K_{\text{NO3,HET}} + C_{\text{NO3}}}, \left[\frac{C_{\text{HPO4}}}{K_{\text{HPO4,HET}} + C_{\text{HPO4}}}\right]\right) \cdot C_{\text{HET}}$$

**ETH** zürich

eawag aquatic research 8000 Nitrification is mediated by nitrifying bacteria.

Different organisms are responsible for the two steps of nitrification:

- N1: First step of nitrification from ammonium to nitrite (e.g. *Nitrosomonas*)
- N2: Second step of nitrification from nitrite to nitrate (e.g. *Nitrobacter*)

## **Growth of Nitrifying Bacteria**

# Stoichiometry: Rates: $\rho_{\mathrm{gro,N1}} = k_{\mathrm{gro,N1},T_0} \cdot \exp\left(\beta_{\mathrm{N1}}(T-T_0)\right)$ $\cdot \min\left(\frac{C_{\rm NH4}}{K_{\rm NH4,nitri} + C_{\rm NH4}}, \frac{C_{\rm O2}}{K_{\rm O2,nitri} + C_{\rm O2}}, \frac{C_{\rm HPO4}}{K_{\rm HPO4,nitri} + C_{\rm HPO4}}\right) \cdot C_{\rm N1}$ $\rho_{\text{gro},\text{N2}} = k_{\text{gro},\text{N2},T_0} \cdot \exp\left(\beta_{\text{N2}}(T-T_0)\right)$ $\cdot \min\left(\frac{C_{\text{NO2}}}{K_{\text{NO2,nitri}} + C_{\text{NO2}}}, \frac{C_{\text{O2}}}{K_{\text{O2,nitri}} + C_{\text{O2}}}, \frac{C_{\text{HPO4}}}{K_{\text{HPO4,nitri}} + C_{\text{HPO4}}}\right) \cdot C_{\text{N2}}$

EHzürich

eawag

What are advantages and disadvantages of modelling heterotrophic and nitrifying bacteria explicitly?



**ETH** zürich

eawag aquatic research 8000



**ETH** zürich

eawag

Overview of substance transport and mixing processes in rivers under steady-state hydraulic conditions:

- the estimation of average flow velocity and water depth
- vertical mixing
- lateral mixing
- longitudinal transport and dispersion

We often know the geometry and discharge of a river,

but we have to estimate the average flow velocity and water depth

What do you think:

What affects the flow velocity in a river?

What affects the water depth?





**ETH** zürich

eawar
Steady-state hydraulics: average flow velocity v and water depth h

depend on discharge Q and the geometry of the river bed.



 $z_{\rm B}$ : vertical coordinate of the river bed, x: distance along the river,  $S_f$ : non-dimensional friction force,  $S_0$ : slope of the river bed, m: mass, g: gravitational acceleration

EHzürich

eelwele

**Friction** is caused by surface roughness and irregularities of the river bed, by irregularities in channel geometry, obstructions, vegetation and curves.

All these causes generate **dissipation** (loss of kinetic energy in the open system due to conversion into heat).

This is a very complex process that cannot be accounted for mechanistically in simple, one-dimensional models.

To estimate the friction force, we use a simple parameterization as a function of averaged flow quantities, geometry of the riverbed and surface roughness.

**ETH** zürich

Friction force made non-dimensional by division through the gravitational force of the fluid, formulation after Darcy-Weisbach and Manning-Strickler.

Darcy-Weisbach Strickler Manning 
$$S_{\rm f} = \frac{f}{8g} \frac{1}{R} \frac{Q^2}{A^2} , \quad S_{\rm f} = \frac{1}{K_{\rm st}^2} \frac{1}{R^{4/3}} \frac{Q^2}{A^2} = n^2 \frac{1}{R^{4/3}} \frac{Q^2}{A^2} , \quad n = \frac{1}{K_{\rm st}}$$

f: non-dimensional friction-factor, Q: discharge, A: wetted cross-sectional area, R: hydraulic radius (A divided by wetted perimeter),  $K_{\rm st}$ : Friction coefficient according to Strickler, n: friction coefficient according to Manning

**ETH** zürich



for a wide rectangular river bed: 
$$P = w + 2h \approx w$$
  $R = \frac{A}{P} \approx \frac{A}{w}$ 

Assumption: prismatic river reach, constant friction, no backwater:

$$S_f = S_0$$

**ETH** zürich

$$S_f = \frac{1}{{K_{st}}^2} \frac{1}{R^{4/3}} \frac{Q^2}{A^2}$$

substituting: 
$$S_f = S_0$$
;  $R = \frac{A}{P} \approx \frac{A}{w}$ ;  $A = \frac{Q}{v}$ 

$$S_0 = \frac{1}{K_{st}^2} \frac{1}{\left(\frac{Q}{v}\right)^{4/3}} \frac{Q^2}{\left(\frac{Q}{v}\right)^2}$$

solving for v:

$$v = \left(K_{st}\sqrt{S_0}\right)^{\frac{3}{5}} \left(\frac{Q}{w}\right)^{\frac{2}{5}}$$

with non-dimensional friction force  $S_f$ Strickler coefficient  $K_{st}$ , hydraulic radius R, discharge Q, cross sectional area A, wetted perimeter P, river width w, flow velocity v, slope  $S_0$  similar for Darcy-Weissbach and Manning equation:

$$v = \left(\frac{8g}{f}S_0\frac{Q}{w}\right)^{\frac{1}{3}} \text{ (Darcy-Weissbach)}$$
$$v = \left(\overline{K_{st}}\sqrt{S_0}\right)^{\frac{3}{5}} \left(\frac{Q}{w}\right)^{\frac{2}{5}} = \left(\frac{\sqrt{S_0}}{n}\right)^{\frac{3}{5}} \left(\frac{Q}{w}\right)^{\frac{2}{5}} \text{ (Strickler-Manning)}$$
$$h = \frac{Q}{wv}$$

**ETH** zürich

eawag aquatic research 8000

# **Transport and Mixing in Rivers**



## Estimation of the Manning coefficient:

| Category             | Property      | Contribu  | Contribution to friction  |             |  |  |
|----------------------|---------------|-----------|---------------------------|-------------|--|--|
| Surface material     | earth         | $n_1 =$   | 0.020                     | $s/m^{1/3}$ |  |  |
| of the river bed     | fine gravel   |           | 0.024                     | $s/m^{1/3}$ |  |  |
|                      | coarse gravel |           | 0.028                     | $s/m^{1/3}$ |  |  |
| Irregularities       | smooth        | $n_2 =$   | 0.000                     | $s/m^{1/3}$ |  |  |
| of the river bed     | minor         |           | 0.005                     | $s/m^{1/3}$ |  |  |
|                      | moderate      |           | 0.010                     | $s/m^{1/3}$ |  |  |
|                      | severe        |           | 0.020                     | $s/m^{1/3}$ |  |  |
| Variation of shape   | gradual       | $n_3 =$   | 0.000                     | $s/m^{1/3}$ |  |  |
| of the cross-section | occasional    |           | 0.005                     | $s/m^{1/3}$ |  |  |
|                      | frequent      |           | 0.010 - 0.015             | $s/m^{1/3}$ |  |  |
| Obstructions in      | negligible    | $n_4 =$   | 0.000                     | $s/m^{1/3}$ |  |  |
| the river bed        | minor         |           | 0.010 - 0.015             | $s/m^{1/3}$ |  |  |
|                      | appreciable   |           | 0.020 - 0.030             | $s/m^{1/3}$ |  |  |
|                      | severe        |           | 0.040 - 0.060             | $s/m^{1/3}$ |  |  |
| Vegetation           | none          | $n_5 =$   | 0.000                     | $s/m^{1/3}$ |  |  |
|                      | low           |           | 0.005 - 0.010             | $s/m^{1/3}$ |  |  |
|                      | medium        |           | 0.010 - 0.025             | $s/m^{1/3}$ |  |  |
|                      | high          |           | 0.025 - 0.050             | $s/m^{1/3}$ |  |  |
|                      | very high     |           | 0.050 - 0.100             | $s/m^{1/3}$ |  |  |
| Effect of curves     | minor         | $n_{6} =$ | 0.000                     | $s/m^{1/3}$ |  |  |
|                      | appreciable   |           | $0.15 \sum_{i=1}^{5} n_i$ |             |  |  |
|                      | severe        |           | $0.30 \sum_{i=1}^{5} n_i$ |             |  |  |

## River Glatt

S<sub>o</sub>=0.0034

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4  $m^3/s$  we get the following values for mean flow velocity and mean depth:

|          |        | winter |                         | summer                            |
|----------|--------|--------|-------------------------|-----------------------------------|
| $n_1$    | =      | 0.028  | ${\sf s}/{\sf m}^{1/3}$ | $n_1 = 0.028  \mathrm{s/m^{1/3}}$ |
| $n_2$    | =      | 0.005  | ${\sf s}/{\sf m}^{1/3}$ | $n_2$ = 0.005 s/m $^{1/3}$        |
| $n_3$    | =      | 0.000  | ${\sf s}/{\sf m}^{1/3}$ | $n_3$ = 0.000 s/m^{1/3}           |
| $n_4$    | =      | 0.000  | ${\sf s}/{\sf m}^{1/3}$ | $n_4 = 0.000  { m s/m^{1/3}}$     |
| $n_5$    | =      | 0.010  | ${\sf s}/{\sf m}^{1/3}$ | $n_5$ = 0.050 s/m^{1/3}           |
| $n_6$    | =      | 0.000  | ${\sf s}/{\sf m}^{1/3}$ | $n_6 = 0.000  { m s/m^{1/3}}$     |
| n        | =      | 0.043  | ${\sf s}/{\sf m}^{1/3}$ | $n = 0.083 \text{ s/m}^{1/3}$     |
| $K_{st}$ | =      | 23     | $m^{1/3}/s$             | $K_{st}$ = 12 m <sup>1/3</sup> /s |
|          | winter |        |                         | summer                            |
|          |        | v =    | ? m/s                   | v = ? m/s                         |
|          |        | h =    | ? m                     | h = ? m                           |

ETH zürich eawag

## River Glatt

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4  $m^3/s$  we get the following values for mean flow velocity and mean depth:

| winter   |        |       |                   | summer                                     |  |  |  |  |  |
|----------|--------|-------|-------------------|--------------------------------------------|--|--|--|--|--|
| $n_1$    | =      | 0.028 | $s/m^{1/3}$       | $n_1 = 0.028  \mathrm{s/m^{1/3}}$          |  |  |  |  |  |
| $n_2$    | =      | 0.005 | $s/m^{1/3}$       | $n_2$ = 0.005 s/m <sup>1/3</sup>           |  |  |  |  |  |
| $n_3$    | =      | 0.000 | $s/m^{1/3}$       | $n_3 = 0.000  { m s/m^{1/3}}$              |  |  |  |  |  |
| $n_4$    | =      | 0.000 | $s/m^{1/3}$       | $n_4 = 0.000  { m s/m^{1/3}}$              |  |  |  |  |  |
| $n_5$    | =      | 0.010 | $s/m^{1/3}$       | $n_5 = 0.050  { m s/m^{1/3}}$              |  |  |  |  |  |
| $n_6$    | =      | 0.000 | $s/m^{1/3}$       | $n_6 = 0.000  { m s/m^{1/3}}$              |  |  |  |  |  |
| n        | =      | 0.043 | $s/m^{1/3}$       | $n = 0.083  \mathrm{s/m^{1/3}}$            |  |  |  |  |  |
| $K_{st}$ | —      | 23    | $m^{1/3}/s$       | $K_{st} = 12  \mathrm{m}^{1/3}/\mathrm{s}$ |  |  |  |  |  |
|          | winter |       |                   | summer                                     |  |  |  |  |  |
|          | v      | = 0.6 | 58 m/s            | $v = 0.46  \mathrm{m/s}$                   |  |  |  |  |  |
|          | h      | = 0.3 | 36 m <sup>′</sup> | $h = 0.54  \mathrm{m}^{'}$                 |  |  |  |  |  |

**ETH** zürich

### **Zürcher Unterland**



# Mit Boot und Sensen die Glatt mähen

Dieses Jahr ist der Wasserhahnenfuss besonders stark gewachsen. Zwölf Arbeiter stutzen nun bei Opfikon das Gras, um Hochwasser zu verhindern.

#### Von Andreas Frei

Opfikon - In grossen Ballen treibt der abgemähte Wasserhahnenfuss die Glatt hinunter in Richtung Flughafen. Auf der Höhe des Opfiker Werkhofs wird das Gras mit einer Maschine auf eine Flussseite in ein aufgestelltes Gitter getrieben. Dort holt Hermann Meier, Betriebsleiter Gewässerunterhalt in Oberglatt, die Pflanzenteile mit einer riesigen Greifzange aus dem Nass.

vom Hahnenfuss befreien. Sie sind beim Amt für Abfall, Wasser, Energie und Luft (Awel) des Kantons angestellt. Für die Hahnenfussentfernung arbeiten sie mit den Opfikern zusammen.

#### Sechs Meter langes Gras

Ein paar Hundert Meter vom Auffanggitter entfernt mäht Albert Spühler das Gras mit einem Spezialboot, das am Bug einen drei Meter breiten, T-förmi-

Bei einem Wasserfall neben der abgebrannten Holzbrücke kommt das Boot nicht mehr weiter. Auch dort staut sich der Hahnenfuss bereits in grossen Mengen und muss später mit einem Spezialkran entfernt werden.

Flussaufwärts mähen drei weitere Werkarbeiter. Ruedi Meier, Remo Bosshard und Andreas Perren stehen mitten in der Glatt und rücken dem Hahnenfuss nur mit ihren Sensen zu Leibe.

wir es vorziehen mussten.» Weshalb das so ist, sei nicht klar. «Temperatur, Wasserhöhe und Licht haben einen Einfluss. Wieso es jetzt aber bei etwa gleichen Voraussetzungen viel mehr Gras als letztes Jahr hat, können wir nicht erklären.»

#### Hahnenfuss

Hochwassergefahr durch Pflanze

- Advection: directional transport with the water flow
- Diffusion: spreading of mass from highly concentrated areas to less concentrated areas due to undirectional motion; Molecular diffusion (caused by Brownian motion) Turbulent diffusion (caused by turbulence eddies)
- Dispersion: spreading of mass from highly concentrated areas to less concentrated areas due to differences in flow velocity at different flow paths and mixing between the flow paths by diffusion

# **Molecular Diffusion**





48

# **Dispersion**





### view from above



## view from the side

Simple estimate of dispersal of a substance transported in a river using analytical solutions of the transport equation.

Simplifying assumptions:

- constant flow velocity v in time and across river cross-section
- constant vertical turbulent diffusion coefficient K<sub>z</sub>
- constant lateral diffusion and dispersion coefficient  $e_y$

Transport equation:



FHzürich

ETH zürich eawag aguatic research 80000

Assumption: Substance enters the river homogeneously spread over the river width, lateral dimension can be omitted:

$$v\frac{\partial C}{\partial x} = K_z \frac{\partial^2 C}{\partial z^2}$$

Analytical solution for a substance entering the river at the water surface and no considerable concentration reaching the river bed:

$$C(x, y, z) = \frac{J}{w} \frac{1}{v} \frac{2}{\sqrt{2\pi}} \frac{1}{\sigma_z(x)} \exp\left(-\frac{(z - z_0)^2}{2\sigma_z(x)^2}\right) \quad , \quad \sigma_z(x) = \sqrt{2K_z \frac{x}{v}}$$

J: mass flux of the substance entering the river at its surface, w: river width.  $z_0$ : z-coordinate of the river surface.



For longer distances along the river, this solution must be extended to

$$C(x, y, z) = \frac{J}{w} \frac{1}{v} \frac{2}{\sqrt{2\pi}} \frac{1}{\sigma_z(x)} \sum_{n = -\infty}^{\infty} \exp\left(-\frac{(z - z_0 - 2 \cdot nh)^2}{2\sigma_z(x)^2}\right)$$

Consideration of the increase in concentration due to the no-flux boundary condition at the river bed. Because of the quick decrease of the exponential function, in most situations only a small number of terms must be considered in this sum.

## Mixing distance:

Horizontal distance, after which the substance is nearly homogenously mixed over the depth of the river

Definition: distance, after which the standard deviation  $\sigma_z(x)$  of the vertical substance distribution is equal to the depth of the river.



## Estimation of the coefficient of vertical turbulent diffusion, $K_z$ :

 $\tau_0 \approx \rho g h S_0$ 

$$u^* = \sqrt{\frac{\tau_0}{\rho}} , \qquad u^* \approx \sqrt{ghS_0}$$
$$K_z \approx \frac{1}{6} \kappa u^* h \approx 0.07 u^* h$$

 $\tau_0$ : bottom shear stress,  $\rho$ : density of the flowing medium, g: graviational acceleration, h: water depth,  $S_0$ : river slope,  $u^*$ : shear velocity,  $\kappa \approx 0.4$ : Karman constant

ETH zürich eawag aguatic research 80000

## **River Glatt**

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4  $m^3/s$ 

| winter       |   |      |         | summer                     |
|--------------|---|------|---------|----------------------------|
| v            | = | 0.68 | m/s     | v = 0.46  m/s              |
| h            | = | 0.36 | m       | h = 0.54  m                |
| $K_z$        | = | ?    | $m^2/s$ | $K_z = ? m^2/s$            |
| $s_{\min,z}$ | = | ?    | m       | $s_{\mathrm{mix},z}$ = ? m |

Similar result for  $s_{\min,z}$ : difference in mixing coefficient partly compensated by difference in water depth.

$$K_z \approx \frac{1}{6} * 0.4 * \sqrt{ghS_0} * h$$
  $s_{mix,z} \approx \frac{h^2}{2K_z} v$  with g = 9.8067 m/s<sup>2</sup>

ETH zürich eawag aquatic research 80000

## **River Glatt**

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4  $m^3/s$ 

| winter           |                |   | summer |         |             |                 |    |      |     |         |
|------------------|----------------|---|--------|---------|-------------|-----------------|----|------|-----|---------|
|                  | v              | = | 0.68   | m/s     | v           | =               | 0. | 46   | m/  | 's      |
|                  | h              | = | 0.36   | m       | h           | =               | 0. | 54   | m   |         |
| K                | $\overline{z}$ | = | 0.0028 | $m^2/s$ | $K_z$       |                 | =  | 0.00 | )51 | $m^2/s$ |
| $s_{\mathrm{n}}$ | nix, z         | = | 17     | m       | $s_{ m mi}$ | $\mathbf{x}, z$ | =  | 14   | 4   | m       |

Similar result for  $s_{\min,z}$ : difference in mixing coefficient partly compensated by difference in water depth.

$$K_z \approx \frac{1}{6} * 0.4 * \sqrt{ghS_0} * h$$
  $s_{mix,z} \approx \frac{h^2}{2K_z} v$  with g = 9.8067 m/s<sup>2</sup>

ETH zürich eawag

Assumption: Substance enters the river well mixed over the river depth, vertical dimension and time dependence can be ignored:

$$v\frac{\partial C}{\partial x} = e_y \frac{\partial^2 C}{\partial y^2}$$

Analytical solution for a substance entering the river at its bank and no considerable concentration reaching the other bank:

$$C(x, y, z) = \frac{J}{h} \frac{1}{v} \frac{2}{\sqrt{2\pi}} \frac{1}{\sigma_y(x)} \exp\left(-\frac{(y - y_0)^2}{2\sigma_y(x)^2}\right) \quad , \quad \sigma_y(x) = \sqrt{2e_y \frac{x}{v}}$$

J: mass flux of the substance entering the river at its bank, h: water depth,  $y_0$ : y-coordinate of this bank



For longer flow distances along the river, the no-flow boundary condition at the other bank must be taken into account and the solution must be extended:

$$C(x, y, z) = \frac{J}{h} \frac{1}{v} \frac{2}{\sqrt{2\pi}} \frac{1}{\sigma_y(x)} \sum_{n = -\infty}^{\infty} \exp\left(-\frac{(y - y_0 - 2 \cdot nw)^2}{2\sigma_y(x)^2}\right)$$

Due to the fast decrease of the exponential function, in most cases only a small number of terms must be considered in this sum. Estimation of the lateral extension of the substance distribution (close to the point of entrance into the river):

$$L_y \approx 2\sigma_y(x) = 2\sqrt{2e_y\frac{x}{v}}$$

Estimation of the maximum concentration with a rectangular distribution with half of this width:

$$C_{\max} \approx \frac{J}{hv} \frac{1}{\min(\sigma_y(x), w)} = \frac{J}{hv} \frac{1}{\min\left(\sqrt{2e_y \frac{x}{v}}, w\right)}$$

Far from the input site, the maximum concentration is equal to the concentration after complete mixing across the cross-sectional area.

## Lateral mixing distance:

Distance along the river, after which the substance is nearly homogeneously mixed in lateral direction

Definition: distance, after which the standard deviation  $\sigma_y(x)$  of the lateral substance distribution is equal to the river width.



For longer flow distances along the river, the no-flow boundary condition at the other bank must be taken into account and the solution must be extended:

$$C(x, y, z) = \frac{J}{h} \frac{1}{v} \frac{2}{\sqrt{2\pi}} \frac{1}{\sigma_y(x)} \sum_{n = -\infty}^{\infty} \exp\left(-\frac{(y - y_0 - 2 \cdot nw)^2}{2\sigma_y(x)^2}\right)$$

Due to the fast decrease of the exponential function, in most cases only a small number of terms must be considered in this sum.

ETH zürich eawag aquatic research 80000

Estimation of the coefficient of lateral turbulent diffusion plus dispersion  $e_y$ :

$$\tau_0 \approx \rho g h S_0 \quad , \quad u^* = \sqrt{\frac{\tau_0}{\rho}} \quad , \quad u^* \approx \sqrt{g h S_0}$$
$$K_x \approx K_y \approx \theta_K u^* h \quad , \quad \theta_K \approx 0.15$$
$$e_y \approx \theta_e u^* h \quad , \quad \theta_e \approx 0.6$$

 $K_x$ : coefficient of horizontal turbulent diffusion,  $K_y$ : coefficient of lateral turbulent diffusion,  $\theta_K$ : proportionality factor for lateral turbulent diffusion,  $u^*$ : shear velocity, h: water depth,  $\theta e$ : proportionality factor for lateral turbulent diffusion plus dispersion

## **River Glatt**

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4 m<sup>3</sup>/s

| winter       |   |       |         | summer       |   |       |         |  |
|--------------|---|-------|---------|--------------|---|-------|---------|--|
| $e_y$        | = | 0.024 | $m^2/s$ | $e_y$        | = | 0.043 | $m^2/s$ |  |
| $s_{\min,y}$ | = | 3600  | m       | $s_{\min,y}$ | = | 1400  | m       |  |

Note that mixing distances in a river with a width of 16 m can already be of considerable length. This must be considered when taking water samples downstream of tributaries or pollutant discharge sites.

# Lateral mixing

### ETH zürich eawag aquatic research 8000



# **Transport and longitudinal dispersion**



**ETH** zürich

eawag aquatic research 8000 Simple estimate of longitudinal dispersal of a substance transported in a river using analytical solutions of the one-dimensional transport (advections-dispersion) equation.

$$\frac{\partial C}{\partial t} = -v\frac{\partial C}{\partial x} + E_x\frac{\partial^2 C}{\partial x^2}$$

 $E_x$ : coefficient of longitudinal dispersion, v: mean flow velocity

EHzürich

Solution of the transport equation for a pulse input of mass m:

$$C(x,t) = \frac{m}{hw} \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_x(t)} \exp\left(-\frac{(x-vt)^2}{2\sigma_x(t)^2}\right) \quad , \quad \sigma_x(t) = \sqrt{2E_xt}$$

w: width of the river, h: mean water depth, v: mean flow velocity,  $E_x$ : longitudinal dispersion coefficient **ETH** zürich

Estimation of the longitudinal dispersion coefficient  $E_x$ 

$$\left| E_x \approx c_f \frac{w^2 v^2}{u^* h} \right| \quad , \quad c_f \approx 0.011$$

- Dispersion increases with increasing velocity differences across the river
- Dispersion increases with increasing width of the river, because of decreasing lateral mixing
- Dispersion decreases with lateral turbulent diffusivity (u\*h), as this increases mixing across the river

w: width of the river, v: mean flow velocity,  $u^*$ : shear velocity, h: mean water depth,  $c_f$ : non-dimensional proportionality factor

EHzürich

Estimation of the position of the pulse:

$$s_x \approx vt$$

Estimation of the length of the pulse

$$L_x \approx 4\sigma_x(t) = 4\sqrt{2E_x t}$$

Estimation of the maximum concentration (rectangular pulse with half of this length)

$$C_{\max} \approx \frac{m}{hw} \frac{1}{2\sigma_x(t)} = \frac{m}{hw} \frac{1}{2\sqrt{2E_x t}}$$

**ETH** zürich

## **River Glatt**

wintersummer
$$E_x = 33 \text{ m}^2/\text{s}$$
 $E_x = 8 \text{ m}^2/\text{s}$ 

The significantly stronger mixing across the width of the river reduces longitudinal dispersion considerably in summer compared to the winter situation. Note that the length of the pulse depends only on the square root of  $E_x$ .

**ETH** zürich

## Transport and longitudial dispersion in a box model:

Many simple models of rivers approximate the river by a sequence of mixed reactors. The distance along the river is divided into sections of length  $\Delta x$ . The volume V of the reactors can be described by:

$$V = wh\Delta x$$

Mixing within these boxes results in longitudinal dispersion with an equivalent dispersion coefficient given by:

$$E_x = \frac{v\Delta x}{2} = \frac{Q\Delta x}{2wh}$$

This effect is called "numerical diffusion".

EHzürich



**ETH** zürich

eawag aquatic research 8000
## **Benthic Population, O, N, P in a River**



**ETH** zürich

eawag aquatic research 8000

## **Benthic Population, O, N, P in a River**



**ETH** zürich

eawag aquatic research 8000

|          | Process              | Substances / Organisms |                         |                     |          |       |                             |      |      |     |     |                          | Rate                    |
|----------|----------------------|------------------------|-------------------------|---------------------|----------|-------|-----------------------------|------|------|-----|-----|--------------------------|-------------------------|
|          |                      | $HPO_4^{2-}$           | $NH_4^+$                | $NO_2^-$            | $NO_3^-$ | $O_2$ | DOM                         | SALG | SHET | SN1 | SN2 | SPOM                     |                         |
|          |                      | gP                     | gŇ                      | gÑ                  | gЙ       | gO    | g                           | gDM  | gDM  | gDМ | gDM | gDM                      |                         |
| Algae    | Growth of alg. NH4   | —                      | _                       |                     |          | +     |                             | 1    |      |     |     |                          | $ ho_{ m gro,SALG,NH4}$ |
|          | Growth of alg. NO3   | _                      |                         |                     | _        | +     |                             | 1    |      |     |     |                          | $ ho_{ m gro,SALG,NO3}$ |
|          | Respiration of algae | +                      | +                       |                     |          | _     |                             | -1   |      |     |     |                          | $ ho_{ m resp,SALG}$    |
|          | Death of algae       | 0/+                    | 0/+                     |                     |          | 0/+   |                             | -1   |      |     |     | $Y_{\mathrm{ALG,death}}$ | $ ho_{ m death,SALG}$   |
| Het. Bac | Growth het. b. NH4   | ?                      | ?                       |                     |          | _     | $\frac{-1}{Y_{\rm HET}}$    |      | 1    |     |     |                          | $ ho_{ m gro,SHET,NH4}$ |
|          | Growth het. b. NO3   | ?                      |                         |                     | ?        | _     | $\frac{-1}{Y_{\text{HET}}}$ |      | 1    |     |     |                          | $ ho_{ m gro,SHET,NO3}$ |
|          | Resp. of het. bact.  | +                      | +                       |                     |          | _     | - HEI                       |      | -1   |     |     |                          | $ ho_{ m resp,SHET}$    |
|          | Death of het. bact.  | 0/+                    | 0/+                     |                     |          | 0/+   |                             |      | -1   |     |     | $Y_{\mathrm{HET,death}}$ | $ ho_{ m death,SHET}$   |
| N        | Growth of N1         | _                      | $\frac{-1}{Y_{\rm N1}}$ | +                   |          | _     |                             |      |      | 1   |     |                          | $ ho_{ m gro,SN1}$      |
|          | Resp. of N1          | +                      | +                       |                     |          | _     |                             |      |      | -1  |     |                          | $ ho_{ m resp,SN1}$     |
|          | Death of N1          | 0/+                    | 0/+                     |                     |          | 0/+   |                             |      |      | -1  |     | $Y_{ m N1,death}$        | $ ho_{ m death,SN1}$    |
| N2       | Growth of N2         | _                      |                         | $\frac{-1}{Y_{N2}}$ | +        | _     |                             |      |      |     | 1   |                          | $ ho_{ m gro,SN2}$      |
|          | Resp. of N2          | +                      | +                       | 112                 |          | _     |                             |      |      |     | -1  |                          | $ ho_{ m resp,SN2}$     |
|          | Death of N2          | 0/+                    | 0/+                     |                     |          | 0/+   |                             |      |      |     | -1  | $Y_{ m N2,death}$        | $ ho_{ m death,SN2}$    |
|          | Hydrolysis           | 0/+                    | 0/+                     |                     |          | 0/+   | $Y_{\mathrm{hyd}}$          |      |      |     |     | -1                       | $ ho_{ m hyd}$          |

**ETH** zürich

eawag aquatic research 8000

- ETH zürich eawag aquatic research 80000
- Introduction, principles of modelling environmental systems, mass balance in a mixed reactor, process table notation, simple lake plankton model Exercise: R, ecosim-package, simple lake plankton model Exercise: lake phytoplankton-zooplankton model
- 2. Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
- 3. Biological processes in lakes
- 4. Physical processes in lakes, mass balance in multi-box and continuous systems Exercise: structured, biogeochemical-ecological lake model Assignments: build your own model by implementing model extensions
- 5. Physical processes in in rivers, bacterial growth, river model for benthic populations Exercise: river model for benthic populations, nutrients and oxygen
- 6. Stochasticity, uncertainty, Parameter estimation Exercise: uncertainty, stochasticity
- 7. Existing models and applications in research and practice, examples and case studies, preparation of the oral exam, feedback

ETH zürich eawag aquatic research 8000

There will be an **oral exam in the two weeks** after the semester 11./12. June 25 (10. or 4./5. June if needed) It is your responsibility to register/deregister in time.

During the semester you will develop and implement your own model (in teams of two people), interpret simulation results and perform a sensitivity analysis. We will assign topics today.

## Deadline for initial code submission: 08.05.25

## Send your code to emma.chollet@eawag.ch and chuxinyao.wang@eawag.ch

Deadline for submission of R-files, results and interpretation: 23.05.25

This is mandatory for being admitted to the exam! In the oral exam we will start with questions about your model before moving on to other topics.

Please use the time in the exercises to ask questions and get help! Don't do it last minute.

- Read Chapters 11.5 and 11.6 about the river model
- Think about your questions