

Model Uncertainties and Parameter Estimation

7.5.2025 — Andreas Scheidegger

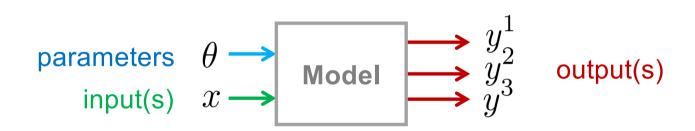
Goals of today

- i. You can identify different sources of model uncertainties.
- ii. You know how uncertainties can be quantified mathematically.
- iii. You can assess different ways to obtain parameter values.

Model uncertainties

What is a model?

A computer program:



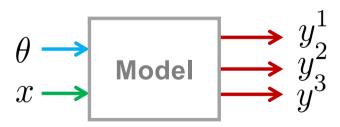
A mathematical function*: $y = m(x; \theta)$

*if the model output is stochastic, we often use capital letters: $Y = M(x; \theta)$

Models are wrong: sources of uncertainty

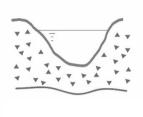
Almost all models suffer from these sources of uncertainty:

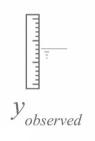
- 1. Input uncertainty
- 2. Parameter uncertainty
- 3. Model structure uncertainty
- 4. Output (measurement) uncertainty
- 5. (Scenario uncertainty)



Sources of Model Uncertainty

Input→ Process→Response → Observation





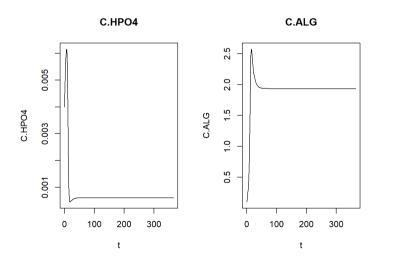
Sources of uncertainty: Phytoplankton Model

Think about examples for each source of uncertainty:

- 1. Input uncertainty
- 2. Parameter uncertainty
- 3. Model structure uncertainty
- 4. Output (measurement) uncertainty
- 5. (Scenario uncertainty)

Which source do you judge the most relevant?

Process	HPO4	/ Organisms ALG	Rate
	$[gP/m^3]$	$[{ m gDM/m^3}]$	
Growth of algae	$-\alpha_{\mathrm{P,ALG}}$	1	$ ho_{ m gro,ALG}$
Death of algae		-1	$ ho_{ m death,ALG}$

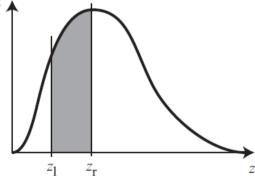


Descriptions of uncertainties

How can we describe uncertainties?

- 1. Guess tomorrow's air temperature in Zurich.
- 2. How (un)certain are you about your guess?

→ Probability distributions are a natural mathematical framework to describe uncertainties.



Probabilities, are they all the same?

- i. What is the probability to throw a five with a dice?
- ii. What is the probability to win the Swiss lottery?
- iii. What is the probability that it snows tomorrow
- iv. What is the probability that it has snowed yesterday on Uetliberg?

repeatable events

unique events

Probability interpretations*

These are interpretations, the mathematical rules (probability calculus) are always the same!

Frequentist interpretation:

- Probability describes the frequency of a random event
- Only applicable if an event can be replicated, e.g. lab experiments, dice, coin flips

Bayesian or subjective interpretation:

- Probability describes the "knowledge" or "belief" about an event
- Is subjective because everybody has different information
- When representing the current state of scientific knowledge, we use "intersubjective" probabilities about which multiple scientists agree.

^{*}This is a deep, philosophical topic, see e.g. https://plato.stanford.edu/entries/probability-interpret/

Uncertainty Analysis

- Error propagation
- Sensitivity Analysis

Error Propagation

I know the *uncertainty of the inputs or parameters*. What is the resulting uncertainty of the *outputs*?

Analytical Error Propagation

Given the standard deviation σ_A and σ_B , what is σ_f ?

Function (model)

$$f = aA \pm bB$$

$$f = AB$$

Variance of output

$$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2$$

$$\sigma_f^2 \approx (AB)^2 \left[\left(\frac{\sigma_A}{A} \right)^2 + \left(\frac{\sigma_B}{B} \right)^2 \right]$$

For full table see:

https://en.wikipedia.org/wiki/Propagation of uncertainty

Based on linear approximation!

Monte Carlo Error Propagation

```
y = empty vector
for i in 1:N
     # sample inputs from distributions
     x \sim \text{rnorm}(10, 2) # Normal(\mu=10, \sigma=2)
     \theta \sim \text{runif}(0, 2) # Uniform(0, 2)
     # run model
     y[i] = model(x, \theta)
end
                                                             Histogram of Temperature
sd(y)
                                                 Frequency
mean(y)
                                                    5
histogram(y)
                                                         60
                                                                70
                                                                      80
                                                                                  100
                                                                  Temperature
```

Exact if *N* goes to infinity

eawa8

Sensitivity Analysis

How important are the different parameters and/or model inputs for the model output?

Factors

(SA does not distinguish between inputs and parameters)

Parameter estimation

Where do we get the numbers from?

How do we get the parameters values?

Parameters phytoplankton model

Parameter values can be obtained by:

- I. Laboratory Experiments
- II. Scientific literature
- III. Calibration of model output to field observations

Information on parameter values

I. Laboratory Experiments

- Parameter needs a physical interpretation
- Lab conditions are not always transferable to real system

II. Scientific literature

- Measured under different conditions, varying methodologies, ...
- Only for "famous" parameters possible

III. Calibration of model output to field observations

- Result depends on the model
- May not be transferable

Model Calibration

What *parameters make the outputs* most similar to the observations?

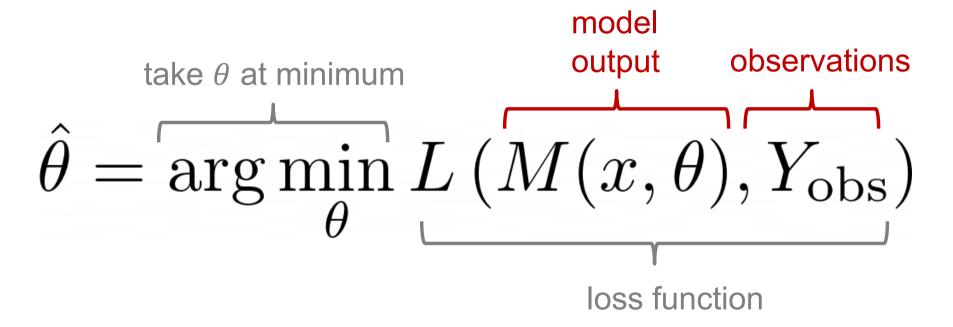
Demo

Manual Calibration

Model calibration techniques

- i. Manual calibration
- ii. Minimizing a loss function
- iii. Maximum Likelihood estimation a special loss function
- iv. Bayesian inference combine field data with other information

Calibration with loss functions



- Any loss function that appears sensible can be used
- Parameter uncertainty cannot be quantified!

eawag

Examples of loss functions

$$\Phi_{\text{SSE}}[\boldsymbol{\theta}] = \sum_{t=1}^{N_t} (q_t^{\text{obs}} - q_t^{\text{sim}}[\boldsymbol{\theta}])^2$$

$$\Phi_{\text{RMSE}}[\boldsymbol{\theta}] = \sqrt{\frac{1}{N_t}} \Phi_{\text{SSE}}[\boldsymbol{\theta}]$$

$$\Phi_{\rm NS}[\boldsymbol{\theta}] = 1 - \left(\frac{\Phi_{\rm RMSE}[\boldsymbol{\theta}]}{\sigma_{\rm obs}}\right)^2$$

$$\Phi_{\text{SAE}}[\boldsymbol{\theta}] = \sum_{t=1}^{N_t} |q_t^{\text{obs}} - q_t^{\text{sim}}[\boldsymbol{\theta}]|$$

Maximum likelihood estimation

$$\hat{\theta} = \arg\max_{\theta} p_M (Y_{\text{obs}} \mid x, \theta)$$
Likelihood function

- The likelihood function is derived from probabilistic assumptions about the data generating process.
- Parameter uncertainty can be approximated (see e.g. https://www.sherrytowers.com/mle_introduction.pdf, section 5)

Likelihood function

A likelihood function $p(\text{data} \mid \theta)$ answers the following question:

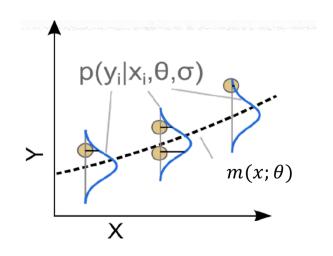
"Given a *stochastic* model that generates random data. If the parameters are set to θ , what is probability (density) that the randomly generated data equal the observed data?"

Note, most of our models are deterministic (i.e. non-random). The most common approach is to assume an additional random error on the output.

Likelihood function: example of a deterministic model + noise

deterministic model

$$Y_i = m(x; \theta) + \epsilon_i$$
 noise $\epsilon_i \sim N(0, \sigma^2)$



Likelihood for a single observations

$$p_i(y_i|x_i,\theta,\sigma) = \text{pdf of N}(m(x_i;\theta),\sigma^2)$$

i.e. the pdf of a normal distribution with mean = $m(x; \theta)$ and standard deviation σ .

Likelihood for all observations

$$p(\mathbf{y}|\mathbf{x},\theta,\sigma) = \prod_{i} p_{i}(y_{i}|x_{i},\theta,\sigma)$$

Demo

Likelihood function

Parameter identifyability

$$V = h_{epi} * A$$

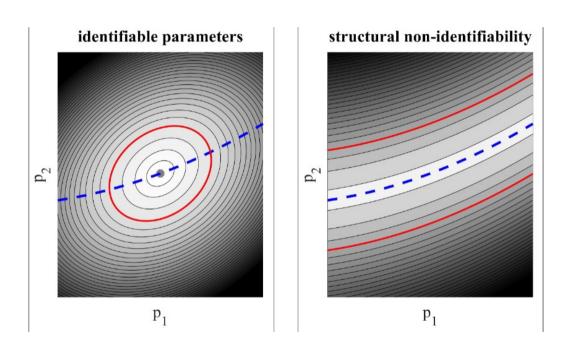


Image from: Wieland, F. G., Hauber, A. L., Rosenblatt, M., Tönsing, C., & Timmer, J. (2021). On structural and practical identifiability. *Current Opinion in Systems Biology*, 25, 60-69.

Bayesian inference: combine all information

- literature
- lab measurements
- experience

- model assumptions
- · field data

• "updated" knowledge

 $p(\theta)$

X

 $p(Y_{obs}|\theta)$

 \propto

 $p(\theta|Y_{obs})$

prior distribution

likelihood function (the same as for MLE!)

posterior distribution

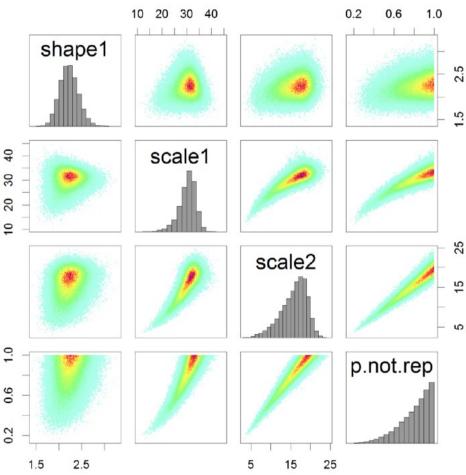
This is often difficult!

Bayesian inference

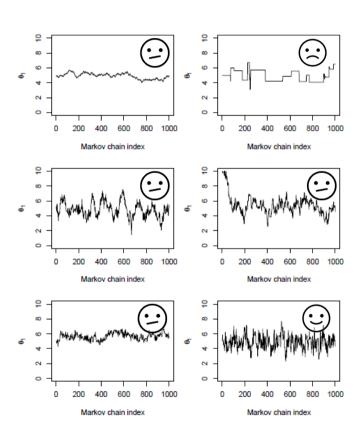
- A principled approach to combine:
 - i. Prior information 🗓 🖔
 - ii. Data
- Based on subjective probability interpretation
- More intuitive interpretation of uncertainty intervals
- Computationally demanding (need to run the model >1000 times)
- Typically used with Monte Carlo Markov Chain (MCMC) sampling

$$p(\theta|Y_{obs}) = \frac{p(Y_{obs}|\theta)p(\theta)}{p(Y_{obs})} = \frac{p(Y_{obs}|\theta)p(\theta)}{\int p(Y_{obs}|\theta')p(\theta')d\theta'}$$

Monte Carlo Markov Chain sampling



One- and two-dimensional marginal of the posterior distribution



Diagnostic of MCMC chains. Tuning is important!

Multivariate Random Variables

Joint probability:
$$p(x, y)$$

Marginal probability:
$$p(x) = \int p(x, y) dy$$

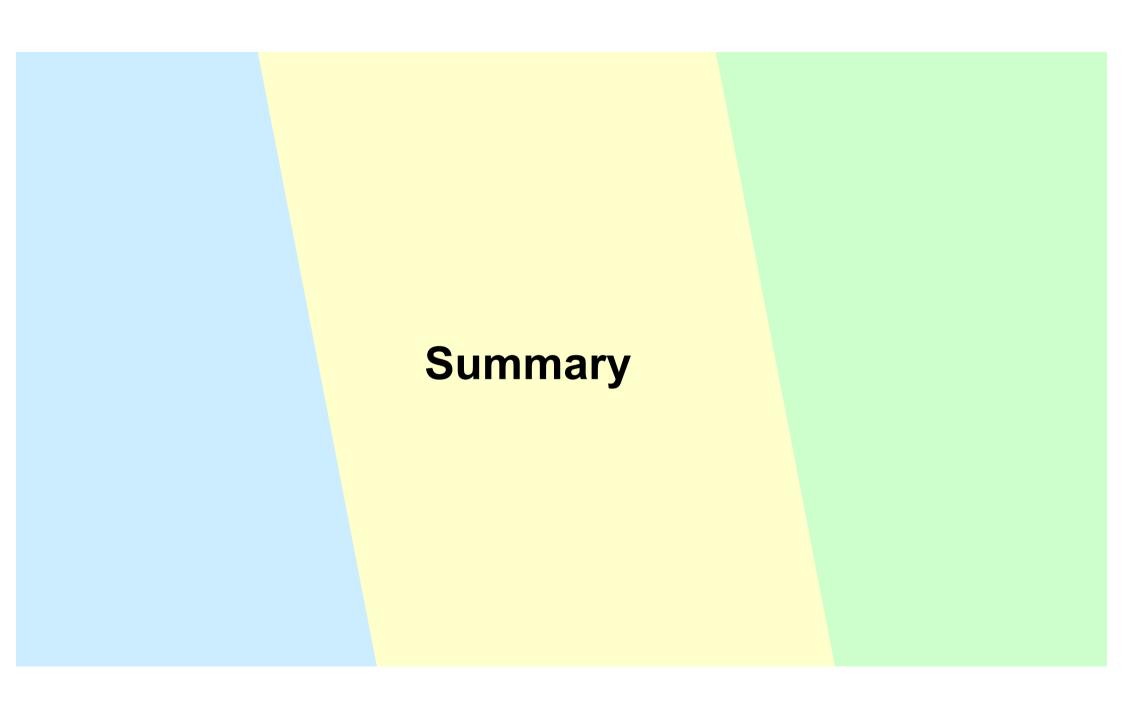
Conditional probability:
$$p(x \mid y) = \frac{p(x,y)}{p(y)}$$

Combining above definitions gives Bayes Theorem:

$$p(x \mid y) = \frac{p(x,y)}{p(y)} = \frac{p(x) p(y \mid x)}{p(y)} = \frac{p(x) p(y \mid x)}{\int p(x') p(y \mid x') dx'}$$

Demo

Bayesian Regression

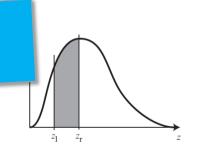


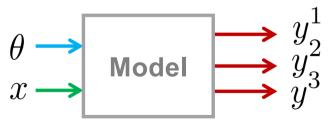
Model uncertainties

- 1. Input uncertainty
- 2. Parameter uncertainty
- 3. Model structure uncertainty
- 4. Output (measurement) uncertainty
- 5. (Scenario uncertainty)

Stop worrying and use Monte Carlo error propagation!

Uncertainties can be described by probability distributions





Parameter values

