
MEDIALAB – User manual

1

MEDIALAB (v 1.0) – User manual

Version 1.0

March 1st, 2014

Babak Shafei (babak.shafei@eawag.ch)

Updates, examples and walkthrough are posted on our website at:

mailto:babak.shafei@eawag.ch

MEDIALAB – User manual

2

MEDIALAB (v 1.0) – User manual .. 1

1. Overview .. 3

2. Theoretical model.. 3

Diagenesis equation .. 3

Boundaries conditions .. 5

3. Implementing diagenesis equation in MATLAB .. 5

pdepe Equation ... 5

Structure of pdepe .. 8

Symbolic programming ... 10

4. Structure of MEDIALAB ... 11

Starting with MEDIALAB ... 13

userMEDIALAB.m .. 13

inputMEDIALAB.txt ... 15

mainMEDIALAB.m ... 15

autoMEDIALAB.m .. 16

postprocessMEDIALAB.m .. 17

5. Potential problems and troubleshooting ... 18

Time integration failed .. 18

Segmentation violation ... 18

Long running time: .. 18

Specific worksheet not found ... 18

DAE of index greater than 1 .. 19

6. References cited ... 20

MEDIALAB – User manual

3

1. Overview

MEDIALAB (Modeling Early DIAgenesis using MATLAB) is an early diagenesis model,

which calculates concentrations and fluxes of chemical species as well as rates of all

the biogeochemical pathways at each depth of aquatic sediments for a specific time

period.

A system of partial differential equations corresponding to early diageneis equation are

automatically generated through MATLAB’s symbolic programming capabilities and

solved using MATLAB’s built-in solver pdepe to evaluate temporal and spatial

distribution of chemical species.

MEDIALAB is executed through the MATLAB home screen. The execution of

MEDIALAB requires an active installation of MATLAB (Version 7.6 release R2008a or

later1). It is recommended to allow at least 1GB of space on the hard drive for the model

output and 1GB of contiguous random-access memory for the initialization routine.

2. Theoretical model

Diagenesis equation

The general, one-dimensional continuum representation of coupled mass transport and

biogeochemical reaction in aquatic sediments is expressed by a set of PDEs of the form

(Aguilera et al., 2005):

 ()

 [

(

 ()

)

()] ∑ () i=1,2,..,Ns (1)

where Ci is the concentration of constituent i (solid-bound and solute concentrations are

expressed in mass per g solid and mass per L porewater, respectively), x is the position

along the 1-D vertical domain, with x = 0 corresponding to the sediment-water interface

(SWI), and t denotes time. In Eq. (1), ∑ () is the sum of the sources and sinks

of species i; it includes the rates of all the (bio)geochemical reactions producing or

1
 MATSEDLAB was developed in and tested up to release R2011b.

MEDIALAB – User manual

4

Table 1. Meaning of the generalized variables in Eq. (1) for solids and solutes in aquatic

sediments.

 Solids Solutes

 1-

D

 ((
))

 where : [-], porosity; [LT
-1

], externally imposed flow velocity; [LT
-1

], burial velocity defined with respect to

the sediment water interface (SWI); [L
2
T

-1
], bioturbation coefficient and molecular diffusion coefficient.

consuming species i, as well as the non-local transport processes that add or remove

the dissolved species, most notably through the irrigation of macrofaunal burrows. In a

multicomponent reaction network containing Ns species and Nr reactions, Eq. (1) is

solved for each species while various chemical species are coupled to one another via

Nr reaction rate expressions appearing in ∑ ().

The variables , D and v take different meanings depending on whether the given

constituent is solid-bound or dissolved (Table 1).

One of major capabilities of MATLAB is to operate on matrix and arrays. Hence, to

implement Eq. (1) in MATLAB, it is practical to convert it to a vector form as follows:

 ()

 ()

 (2)

where [Ns×1] is the vector of concentrations of species, [Ns×1] is the transport

vector encompassing burial and bioturbation terms with molecular diffusion only applied

for the solutes:

 (3)

Sum of the all biogeochemical reaction rates are embedded in vector s [Ns×1] where

rate of the production and consumption of each species is a function of reaction network

stochiometrics and associated reaction rates. It is defined in a matrix notation as below:

 (4)

MEDIALAB – User manual

5

In this equation is the vector of reaction rates with the components of

∑ () , is the stochiometrics matrix and is the vector of

corresponding rate of each reaction. In a fully kinetic description of the set of the

biogeochemical reaction rates, equilibrium reactions are treated by the fast kinetic rate

constants.

Boundaries conditions

For solutes, the upper boundary condition at x = 0 is the bottom water concentration. In

non-steady state simulations the concentration of sediment water interface (SWI) can

be time-dependant reflecting e.g. annual or seasonal variations. In a vector form we

have:

 () () (5)

where () is vector of solutes concentrations at SWI. For solid-bound species, the flux

continuity condition is used at x = 0:

 ⁄
 ()

 ()
 (6)

where J(t) is the vector of depositional flux of the given solid-bound species (time-

dependent in transient simulations), while and are the sedimentation rate and

bioturbation coefficient. The dominator, () ensures consistency among the units

of J(t) and C. In the scripts provided with this manuscript the units used are µmol cm-2

yr-1 (J), µmol g-1 (C) for solid species, cm yr-1 (w) and cm2 yr-1 (); is the dry

sediment density (g cm-3) and is the sediment porosity. As lower boundary condition,

zero gradients are imposed for all solute and solid-bound species:

 () ⁄ (7)

3. Implementing diagenesis equation in MATLAB

pdepe Equation

MEDIALAB – User manual

6

The general form of PDE that is solved by pdepe in MATLAB within temporal (t0<t<tf)

and spatial (a<x<b) domains is as following:

 (

)

((

)) (

) (8)

in which vector u contains all the unknown variables (here the solid and solute

concentrations, i.e. C). Coupling of the partial derivatives with respect to time is

restricted to multiplication by matrix c. On the right hand side of Eq. (8), m is a

parameter corresponding to the symmetry of the problem and can be 0 for slab, 1 for

cylindrical, or 2 for spherical.

Functions f and s – the flux and sink/source terms, respectively – are vector functions,

which depend on depth (x), time (t) , concentrations (u) and concentration gradients

(∂u/∂x). Comparing diagenesis Eq. (1) with pdepe Eq. (8), the term f corresponds to

vector function F as:

 (9)

and represents transport of chemical constituents; it encompasses advective flux

(advection rate), diffusive fluxes of solutes by molecular diffusion (diffusion coefficient

Dm) and sediment mixing by benthic organisms (bioturbation coefficient Db). The term s

and vector S are balanced as

 (10)

They account for the net production or consumption of all the chemical species by

(bio)geochemical reactions and, for solutes, also bioirrigation.

In order to solve parabolic PDE of Eq. (8), necessary initial and boundary conditions

must be imposed.

The initial condition at t=t0 and all depths x has the form of:

Note: In all 1-D early diagenesis problems m will be always assigned zero.

MEDIALAB – User manual

7

 () () (11)

Eq. (11) returns initial values of all the chemical species at depth x in the column vector

u. The user may thus specify any set of initial depth profiles, including spatially

heterogeneous distribution. General boundary conditions at x=a and x=b are defined

using the equation:

 () () (⁄) (12)

where f is the transport vector from Eq. (8).

At first sight Eq. (12) may not resemble common diagenesis boundary conditions of

Eq. (5)-Eq. (7). However, commonly-used formulations for boundary conditions, such as

Dirichlet, Neumann and Cauchy/Robin are embedded in Eq. (12) and for each type, the

coefficients () and () take different values. In order to transform boundary

conditions of Eq. (5)-Eq. (7) to Eq. (12), we have:

1. Eq.(5)  Eq.(12)

 (⁄) (

 ()
)

 () () [(

 ()
)

]

 () () () (13)

 [Ns×1] is the approximate solution of pdepe solver at x=0.

2. Eq.(6)  Eq.(12)

 (⁄) ()

 ()

 () () [()

 ()]

 () () () (14)

MEDIALAB – User manual

8

3. Eq.(7)  Eq.(12) for solutes

 (⁄) (

 ()
)

 () () [(

 ()
)

]

 () () (15)

 [Ns×1] is the approximate solution of pdepe solver at x=L.

1. Eq.(7)  Eq.(12) for solids

 (⁄) ()

 ()

 () () [()

 ()]

 () () () (16)

As it is seen from Eq. (12), the boundary conditions can depend on t, which means that

MEDIALAB evaluates the boundary values at each time step. This gives the user the

possibility to impose transient boundary conditions. The latter is particularly useful when

simulating the fate of compounds whose inputs are changing due to, for example,

anthropogenic activity, or when dealing with systems where the bottom-water chemistry

varies over time.

Structure of pdepe

The pdepe function is designed to solve initial-boundary value problems (IBVPs)

consisting of systems of parabolic and elliptic PDEs in one space variable and time. The

numerical method is based on a piecewise nonlinear Petrov–Garlekin method with

second-order accuracy. The method solves the ordinary differential equations (ODEs)

resulting from the spatial discretization of the PDEs, using a built-in MATLAB ODE

MEDIALAB – User manual

9

solver to obtain approximate solutions at specified times within a defined time interval.

It is run through following command:

sol = pdepe(m,pdeFun,icFun,bcFun,x,t)

There are 6 main input arguments that must be parsed to pdepe function. They are :

1) Parameter m which equals to zero in current 1-D diagenesis problem

2) pdeFun is a function that computes the components of the PDE i.e. c,f,s. It has

the following format

[c,f,s] = pdeFun(x,t,u,dudx)

The input arguments are :

 x: vector of spatial domain

 t: vector of temporal domain

 u: vector of unknown concentrations

 dudx: vector of approximate partial derivative with respect to x or

concentration gradients.

3) icFun is the initial condition function which evaluates spatial-dependent initial

concentration of species and returns the values in vector u. It has the form of:

u = icFun(x)

where vector x of spatial domain is the only input argument.

4) bcFun is the function that evaluates the terms p and q of the boundary

conditions in Eq. (12). It has the form

[pl,ql,pr,qr] = bcFun(xl,ul,xr,ur,t)

ul is the approximate solution at the upper boundary xl = a and ur is the

approximate solution at the lower boundary xr = b. pl and ql are column vectors

corresponding to p and q evaluated at xl, similarly pr and qr correspond to xr.

MEDIALAB – User manual

10

Therefore, 4 vectors of pl, ql, pr and qr with the dimension of [Ns×1] are

computed by this function.

The ultimate output of pdepe function returns values of the concentrations as a

multidimensional matrix, sol, on a mesh provided in x and t vectors. To extract the

concentration of ith species in spatial and temporal steps j and k we can write:

ujki = sol(tspan(j), xmesh(k), i)

Symbolic programming

One of the advantages of MATLAB application is its symbolic programming capability

which is enhanced in the MEDIALAB model to automatically construct the reaction

vector, s. It is done through extracting the coefficients of the chemical species in each

reaction to build the stoichiometric matrix, , that is used to generate sum of the

reaction rates matrix, i.e. , that control production and consumption of each

species. For this purpose, each biogeochemical pathway is assumed to be an algebraic

polynomial equation with the products of the reaction all gathered with the reactants on

the left side of the reaction with negative sign. Analogously chemical species are

defined as symbols in MATLAB language which facilitates algebraic operations that are

required to set up the stoichiometric matrix.

To clarify the process, let’s assume nitrification as one of the reactions in the proposed

conceptual model in reaction network:

NH4
+
 + 2O2 + 2HCO3

-
  NO3

-
 + 2CO2 + 3H2O (17)

There are 6 species involved in this reaction, all required to be defined as symbols. The

corresponding command in MATLAB is as follows:

syms nh4 o2 hco3 no3 co2 h2o

Symbolic names associated with each species is arbitrary. However, it is handy if they

are chosen in a way that can be recognizable in the script. Then, the reaction is

MEDIALAB – User manual

11

converted to a polynomial by rewriting the reaction as below using the symbols defined

above:

R = nh4 + 2*o2 + 2*hco3 - no3 - 2*co2 - 3*h2o (18)

To extract number of moles of each species that are produced or consumed in this

reaction, following MATLAB command is used to obtain the coefficients of R with

respect to every species. For example, 1 mole of ammonium in this reaction is

consumed, thus it has a coefficient of 1 which is attained through following command:

c = coeffs(R,nh4)

By applying two consecutive ‘for’ loops over total number of reactions and species

stoichiometric matrix, is obtained which is saved as stochiometrix variable.

stochiometrix (i,j) corresponds with number of moles of species i that are

produced or consumed in reaction j. Positive and negative signs are associated with

production and consumption, respectively. If reaction j doesn’t invoke species i, then

stochiometrix(i,j) equals to zero.

4. Structure of MEDIALAB

MEDIALAB encompasses five .m files:

 mainMEDIALAB.m

 userMEDIALAB.m

 autoMEDIALAB.m

 plotMEDIALAB.m

 postprocessMEDIALAB.m

In addition there is a text file, inputMEDIALAB.txt, that includes all the required

parameters incorporated in the conceptual model. In case of availability of measured

field data, most notably sediment profile data, there will be an Excel spreadsheet with

measured field data and depth that measurements have taken place. There must be a

separate sheet for each species with the exact name of chemical species.

MEDIALAB – User manual

12

Figure (1). This figure shows schematic structure of MEDIALAB. It consists of 5 .m scripts (shown by blue

ovals), 1 input text file and 1 excel file of field data (shown by green rectangular), and 3 functions as

components of pdepe solver (shown with orange circles). Blue arrows are in the direction of functions or

files that are called from other script. The input arguments in the calling process are denoted by blue text

next to the blue arrow. The output arguments resulting from calling each function is depicted by red

arrows and red text next to them. Numbers on blue arrows are the sequence of functions that are called

through mainMEDIALAB.m. The blue dotted box contains all the required files during the simulation while

postprocessMEDIALAB.m and plotMEDIALAB.m are utilities for post processing and plotting.

mainMEDIALAB.m

userMEDIALAB.m autoMEDIALAB.m

inputMEDIALAB.txt

x, t,

speciesName

inputFile, r

R,

reactionUnits x, t,

speciesName

inputFile, r

R,

reactionUnits

speciesPhase,

stochiometrix,

advection,

diffusion,

reaction, plBC,

prBC

postprocessMEDIALAB.m

x, t,

speciesName

inputFile, r

R,

reactionUnits

speciesPhase,

stochiometrix,

advection,

diffusion,

reaction, plBC,

prBC

plotMEDIALAB.m fieldData.xlsx

pdepe

solver

pdeFun pdeIC pdeBC

1 2

3

4 4 4

MEDIALAB – User manual

13

Table 2 is the summary of the files in the MEDIALAB package:

Table 2. Files included in MEDIALAB package.

FILE TYPE User
Modified

Input Arguments Output Arguments

mainMEDIALAB.m MATLAB

file

No - simValues,

depth, time

userMEDIALAB.m MATLAB

file

Yes - x, t, w,

speciesName,

inputFile, r,

R,

reactionUnits

autoMEDIALAB.m MATLAB

file

No speciesName,inputFile,

r, R, reactionUnits

speciesPhase,

stochiometrix,

advection,

diffusion,

reaction, plBC

plotMEDIALAB.m MATLAB

file

No -

postprocessMEDIALAB.m MATLAB

file

No -

inputMEDIALAB.txt Text file Yes - -

fieldDATA.xlsx Excel file Yes - -

Starting with MEDIALAB

userMEDIALAB.m is the first script that has to be modified by the user to provide all

the necessary information of spatial and temporal domains as well as biogeochemical

reaction network. There are some other parameters such as list of species names,

organic matter composition coefficients and input file name that have to be included in

the script. Species are characterized by string variables and their assigned names

contain either ‘(s)’ or ‘(aq)’ representing solid or aqueous species, respectively. This is

MEDIALAB – User manual

14

an approach to characterize phase of the species in the script when building the

transport matrix (as molecular diffusion is excluded in case of solid species) and

reaction matrix (to ensure consistency between reactions and species units). As

described above, variable names used for the chemical species are defined as symbols

to set up the reaction network. In general for an irreversible reaction:

aA + bB  cC + dD (19)

species A, B, C and D have to be defined as symbols and reaction is rewritten as:

aA + bB – cC – dD (20)

If the reaction is reversible, there will be two algebraic polynomials representing each

direction of the reaction:

aA + bB – cC – dD (21)

and

cC + dD – aA – bB (22)

There are two attributes that have to be determined along with every reaction, R:

reaction rate, r, and unit of the reaction, reactionUnits. Reaction rate is a string

variable containing reaction rate constants and concentrations of species upon which

rates are dependent on. For example if a bimolecular reaction rate is used to define the

kinetics of the reaction (19), then r equals to:

r = 'k_AB * A * B ' (23)

k_AB is the reaction rate constant and provided through inputMEDIALAB.txt as an input

parameter. In a similar manner, all other parameters appeared in kinetic terms of

reaction network must be included in the input file with exact same name.

reactionUnits is a vector of binary values 1 and 0. If the unit of reaction rate is same

as solid phase unit, i.e. µmol/g, then reactionUnits equals to 1 otherwise it is 0.

This is a flag variable which ensures the consistency between species and reaction

MEDIALAB – User manual

15

units. It means if, for instance, A and B in above reaction are aqueous and solid species

respectively and k_AB has the units of [1/(mM.yr)], then r will have a unit of [µmol/g]

which is solid species unit. Therefore, reactionUnits equals to 1.

inputMEDIALAB.txt is the input parameters text file modified by the user and consists

of parameters of transport, reaction rate constants, diffusion and bioturbation

coefficients as well as boundary conditions. The input file has two columns: parameters

names and their values separated by space. Reaction rate constants must have exact

name as they are used in the userMEDIALAB.m script. Molecular diffusion coefficients

and boundary conditions are named as ‘Dmol_’ and ‘BC_’ added with species name,

respectively. For example molecular diffusion coefficients and boundary condition of

ammonium with species name of nh4 are Dmol_nh4 and BC_nh4. Number of

molecular diffusion coefficients and boundary conditions must match with number of

dissolved species and total number of species, respectively.

Other parameters that are included in the inputMEDIALAB.txt are: bioturbation

coefficient, D_bio, sedimentation rate, w, sediment dry density, w, and porosity.

Since concentration of H+ is needed for calculation of the saturation index of iron sulfide

and vivianite, it is also imposed under variable name ph and has the value of 10-pH

stated in mM units.

mainMEDIALAB.m is the core script file of MEDIALAB which is executed from

MATLAB’s home screen. Home directory must be the same address as the folder

containing the contents of MEDIALAB files unless it has been saved in the similar

directory. It is in this script that userMEDIALAB.m, autoMEDIALAB.m and pdepe solvers

are called and the final solution, sol, is saved in the resultMEDIALAB.mat which

involves all the simulated concentrations, depth and time values in a MATLAB matrix

format. After termination of simulation, variables of depth, time and simValues are

saved in the workspace. They are used for plotting and reaction rate calculations

through postprocessMEDIALAB.m.

MEDIALAB – User manual

16

autoMEDIALAB.m

Transport, reaction and boundary condition vectors are automatically generated via

autoMEDIALAB.m in form of MATLAB function handles and are passed to

mainMEDIALAB.m. A function handle is a callable association to a MATLAB® function.

It enables the user to pass a function to another function.

In the first block of the script input parameters are read from inputMEDIALAB.txt file and

stored as paraNames (first column of the input file) and paraValues (second column

of the input file). paraNames elements will be substituted with corresponding

paraValues in advection, diffusion, reaction rate and boundary condition terms. Phase

of the species is also extracted from speciesName vector and saved as variable

speciesPhase in the workspace. Transport and boundary condition functions of solid

species and solutes are computed differently as mentioned in previous sections.

Stoichiometric matrix is built in the 2nd block following the symbolic programming

capability of MATLAB described above. The unit consistency between species and

reaction units is enforced by applying conversion factor, F. From coding point of view it

is implemented through comparing speciesPhase and reactionUnits inside an ‘if’

clause:

for i=1:numSpecies
 for j=1:length(R)
 c=coeffs(R{j},speciesName{i});

if (length(c)>1)

if(((speciesPhase(i)==1)&&(reactionUnits(j)==1))||((speciesPhase(

i)==0)&&(reactionUnits(j)==0)))
 stochiometrix(i,j) = -c(2);
 elseif ((speciesPhase(i)==1)&&(reactionUnits(j)==0))
 stochiometrix(i,j) = -c(2)/F;
 else
 stochiometrix(i,j) = -c(2)*F;
 end;
 else
 stochiometrix(i,j) = 0;
 end

 end
 end

MEDIALAB – User manual

17

Function handle of reaction rates is computed in the 3rd block. Reaction rates described

in the string form in the userMEDILAB.m are not recognizable by pdepe and their

numeric value has to be computed instead. Rate constants values and corresponding u

vector elements are substituted in reaction rate string. For example, in reaction rate Eq.

(23), if k_AB has the numeric value of 0.2 provided through inputMEDIALAB.txt and A

and B are 5th and 8th species in the speciesName vector, then Eq. (23) will be

transformed to:

r = ‘0.2 * u(5) * u(8)’ (24)

which will be ultimately converted to a function handle using MATLAB built-in function,

str2func. str2func('str') constructs a function handle for the function named in the

string 'str'.

In a similar manner, function handles of transport and boundary conditions are

computed in the 4th block. It means advection, diffusion (including molecular diffusion for

solutes) and boundary conditions are formed in a string format and then are converted

to function handles.

Function handles of advection, diffusion, boundary conditions along with stochimerix

matrix are passed to mainMEDIALAB.m to be used as components of pdepe solver.

postprocessMEDIALAB.m

After termination of simulation, using the modeling results of spatial and temporal

concentrations, simValues, are used to integrate reaction rate versus time and space

to obtain spatial and temporal variations. Fluxes of reduced species through SWI such

as Fe(II), S(II), NH4
+ are calculated and plotted versus time. Graphical presentation of

modeling results is done through calling plotMEDIALAB.m. Depth profiles can be

compared with field data of fieldData.xlsx if measurements were available.

MEDIALAB – User manual

18

5. Potential problems and troubleshooting

Time integration failed: This is one of the most frequent problems concerning this

model. It basically means that the solver crashed and failed to solve the system of the

partial differential equations. There are many probabilities why this happened, but the

detailed discussion has to do with numerical stabilities and is not included here. Most

likely, this might be a result of a wide spacing of the spatial domain, or the effect of

certain parameters. Try increasing the space resolution, e.g. from 500 points to 1000

points (at the expanse of longer running time). Alternatively, the user is encouraged to

go back to the set of parameters, for which the solver worked. Change the parameter

one by one, to figure out the one that failed the solver.

Segmentation violation: This error is not frequently seen. Most of the time this is a

result of parallel running of the model, e.g. seven to eight at the same time, which might

be needed when fitting the parameters. To resolve this problem, try not to run a higher

number of instances of the model, than the number of cores of the CPU. Thus, if the

CPU has 4 cores, try not to run 5 or more models at the same time.

Long running time: Normally, the model should finish running within half an hour. If the

running time is too long, it might be a result of certain values being ‘too small’. Try

changing the parameters, or even adding the ‘if’ conditions, so that those values will not

be ‘too small’. Also, one might find alternative formulation for certain rates of reaction,

since experience shows that the solver always works faster with rate laws that are first

order with respect to the species.

Specific worksheet not found: This error might occur when using the ‘result_plot’

functionality. If an excel file name is provided (to plot the field data on top of the model

simulation), there must be a worksheet for every species specified by ‘VarNames’, even

if there is no data for that species. In that case, the sheet will be empty. A template of

the excel file is provided, with the name ‘FIELD_DATA.xls’. Note that the names of the

sheet have to match the names of the species exactly.

MEDIALAB – User manual

19

DAE of index greater than 1: This error occurs when the partial differential equation is

not parabolic, e.g. when the bioturbation rate is set to be zero. The pdepe is only

capable for solving parabolic-elliptic problems. Therefore, for that case, set the

bioturbation rate to be something very small e.g. 0.001, to allow the solver to work. Most

of the time, the theoretical model can be well expressed as a system of parabolic

equations.

Memory - out of bounds: This error mostly occurs on system with less than 4 GB of

random-access memory installed because MATSEDLAB required ~ 1 GB of contiguous

RAM available for the initialisation of the matrices. Disabling start up programs and

performing a clean reboot usually solves the issue.

MEDIALAB – User manual

20

6. References cited

Aguilera, D.R., Jourabchi, P., Spiteri, C., Regnier, P., 2005. A knowledge-based

reactive transport approach for the simulation of biogeochemical dynamics in earth

systems. Geochemistry Geophysics Geosystems 6(Q07012). doi:

10.1029/2004GC000899

Boudreau, B.P., 1999. Metals and models: Diagenetic modelling in freshwater lacustrine

sediments. J. Paleolimnol. 22, 227-251.

Couture, R.M., Gobeil, C., Tessier, A., 2008. Chronology of atmospheric deposition of

arsenic inferred from reconstructed sedimentary records. Environ. Sci. Technol. 42,

6508-6513.

Couture, R.M., Shafei, B., Van Cappellen, P., Tessier, A., Gobeil, C., 2010. Non-Steady

State Modeling of Arsenic Diagenesis in Lake Sediments. Environ. Sci. Technol. 44,

197–203.

Couture, R.M., Shafei, B., Van Cappellen, P., 2012. A Multi-Component, Non-Steady

State Biogeochemical Simulation Module of Early Diagenesis in MATLAB

Matisoff, G., Holdren, G.R., 1995. A model for sulfur accumulation in soft water lake

sediments. Water Resour. Res. 31, 1751-1760.

Shannon, J.D., 1999. Regional trends in wet deposition of sulfate in the United States

and SO2 emissions from 1980 through 1995. Atmospheric Environment 33, 807-816.

Aguilera, D.R., Jourabchi, P., Spiteri, C., Regnier, P., 2005. A knowledge-based

reactive transport approach for the simulation of biogeochemical dynamics in earth

systems. Geochemistry Geophysics Geosystems 6(Q07012). doi:

10.1029/2004GC000899

MEDIALAB – User manual

21

