

Non-targeted investigation of benthic invertebrates exposed to wastewater treatment plant effluents using NanoLC-HRMS

A. BERLIOZ-BARBIER – <u>A. BULETE</u> – A. FILDIER – A. KISS – J. GARRIC – E. VULLIET

Institut des Sciences Analytiques – TRACES team

INTRODUCTION

 $\circ~$ Higher consumption of chemical products in everyday life

Pollution of aquatic ecosystems

(Illustration by Connie J. Dean, U.S. Geological Survey)

Non-targeted approach, a valuable tool to assess the impact of anthropic pressures on benthic invertebrates?

OBJECTIVES

- Based on a non-targeted fingerprinting (metabolomics) strategy:
 - Assess the impact of WWTP effluents on the metabolome of 3 benthic invertebrates
 - Evaluate the influence of exposure conditions and seasonal variations
 - L
- Highlight the inter-species diversity

The development of analytical tools for holistic analysis of biota matrices are required

Mollusc Potamopyrgus antipodarum

Crustacean Gammarus fossarum

Insect larvae Chironomus riparius

- High capability to accumulate pollutants
- Commonly used in biomonitoring programs
- Major food source for macro-invertebrates and vertebrates
- Easy to transport and cultivate

Simultaneous exposure experiments (7 days) 2 exposure campaigns: autumn and summer

Sample preparation using MicroQuEChERS extraction Ο

One freeze-dried organism for mollusc and crustacean and a pool of 4 organisms for insect larvae

500 µl H20 500 µl ACN 200 µl Hexane

500,5 mg of citrate buffer

Centrifugation

Analysis by NanoLC-QqToF Ο

Nanochromatography (Ultimate 3000, Thermofisher[®]) Separation of compounds

Hybrid High Resolution Mass Spectrometer

(MicrOTOF-QII, Bruker Daltonics[®])

Scombination of mass accuracy, high resolution and True Isotopic Pattern (TIP) for precursor and fragment ions

MATERIELS & METHODS

• Optimisation of trapping step

Influence of the eluting strength of loading solvent

• Data analysis strategy

Step 1: Calibration, peak alignment, bucketing

Step 2: Data Matrix creation

	Group	(m/z, tr) ₁	$(m/z, tr)_2$		(m/z, tr) _p
Sample 1	А	I ₁₁	I ₁₂	•••	I _{1p}
Sample 2	В	I ₂₁	I ₂₂	•••	I _{2p}
Sample m	А	l _{m1}	I _{m2}	•••	I _{mp}

Step 3: Statistical analysis (PCA)

Reducing the data complexity to facilitate result interpretation

• Example of *Chironomus riparius*

Laboratory exposure experiments (ex situ approach)

Caging experiments (*in situ* approach)

WWTP effluents modify the metabolome of insect larvae

• Example of *Chironomus riparius*

The metabolome is also influenced by the exposure conditions

- Example of *Chironomus riparius*
 - Study of discriminating signals (m/z ; tr) based on:
 - ✓ ANOVA with FDR correction results (p<0,05)
 - ✓ Study of PCA loading-plot
 - ✓ Evaluation of intensity profiles

• Strategy of discriminating signals identification

Step 4

Analysis of standards is the only means of reaching unambiguous identification
→ Reten on me, full scan and product ions spectra should be compared

o 1st example of discriminating signal identification

Step 1

Annotation of discriminating signal corresponding to (m/z = 295.2293 Da ; tr = 51,4 min) by interrogation of HMDB database using MetaboTrack

 \rightarrow 5 candidates (C₁₈H₃₂O₃)

o 1st example of discriminating signal identification

• 2nd example of discriminating signal identification

Step 1

Annotation of discriminant signal corresponding to (m/z = 221.1170 Da ; tr = 35.9 min) by interrogation of DrugBank database using MetaboTrack

 \rightarrow 3 candidates (1-Hydroxyibuprofen, 2-Hydroxyibuprofen and 3-Hydroxyibuprofen)

(C₁₃H₁₈O₃)

• 2nd example of discriminating signal identification

• 2nd example of discriminating signal identification

Step 4

Analysis of authentic standard: 2-hydroxyibuprofen

→ Reten on me, full scan and product ions spectra are similar...

BUT, in the absence of the two other analytical standards corresponding to 1-Hydroxyibuprofen and 3-Hydroxyibuprofen, it is not possible to confirm the isomerism of hydroxyibuprofen

This result highlights the bioaccumulation and biotransformation capacities of benthic invertebrate for pharmaceuticals

→ This result confirms the impact of exposure conditions → Hydroxyibuprofen has only been detected during *ex situ* approach

CONCLUSION & OUTLOOK

- This study highlights the usefulness of NanoLC-HRMS for environmental non-targeted approaches
- The use of nanoBooster associated with the Captivespray nanosource can be an appropriate tool to improve the sensitivity of small molecules

- The results confirm the impact of WWTP effluents discharge on the metabolome of benthic invertebrates and show the influence of exposure conditions
 - These results could be considered as a first step for the determination of invertebrates 'metabolome but should be investigated by experts with biochemists

ACKNOWLEDGMENTS

Thank you for your attention