Retention Index Prediction Combined with *In Silico* Fragmentation Spectra Comparisons for Increasing Confidence in Structural Elucidation using Non-Targeted Gas Chromatography coupled with High Resolution Mass Spectrometry

“NonTarget 2016 Conference, Ascona, May, 30th 2016”

“P.A. Guy, E. Dossin, E. Martin, P. Diana, P. Pospisil, M. Bentley”

Philip Morris International R&D
Outline

- Generation of aerosol sample / chemical complexity / GC-HR-MS analysis
- Building linear retention index (LRI) prediction models
 - RapidMiner - Dragon software (RM)
 - ACD/ChromGenius software (CG)
 - LRI modeling assessment & usage to characterize aerosol constituents (library database)
- Non-targeted screening workflow for aerosol characterization
- Case studies
- Conclusion and next steps
PMI Science

• PMI is working on various Reduced Risk Products (RRP) delivering nicotine containing aerosols.

• In this context, it is important to fully characterize the chemical composition of RRP aerosols in comparison to smoke produced from cigarettes.

• For analytical method development purposes we use a reference cigarette (3R4F).
Generation of Smoke Samples from a Reference Cigarette

• Reference cigarette: 3R4F*
• Smoking regimen: Health Canada
 - 2 sticks accumulation
 - Puff volume: 55 mL
 - Puff duration: 2 sec
 - Frequency: 2 puffs / min
 - Puff count (butt length)

* University of Kentucky (Kentucky Tobacco R&D Center). http://www2.ca.uky.edu/refcig/

- Cambridge filter is combined with the impingers
- Addition of retention index chemical markers (n-alkanes) & isotopically labeled internal standards

Total Particulate Matter (TPM) → Cambridge filter is extracted → 2 cold impingers in series → Gas Vapor Phase (GVP) → Whole smoke
Unique Compounds & Spectra Database (UCSD)

11,567 molecules are registered in our in-house database:
- Over 7,000 chemicals reported as present in tobacco and tobacco smoke¹
- Over 3,000 molecules associated with flavor properties²-³

1,013 (+EI) accurate mass spectra

- Hydrocarbon (n=1’081)
- Oxygen-containing functions (n=7’427)
- Nitrogen-containing functions (n=1’788)
- Nitrogen heterocyclic functions (n=2’715)
- Sulfur-containing functions (n=897)
- Miscellaneous functions (n=1195)

³ EFSA flavoring substances database.

Goal is to screen the broadest range of smoke constituents in a “non-targeted screening” approach.
Building Linear Retention Index Models using QSPR

Model 1

Structural descriptors

- Experimental LRI data (n=552 ref. stds) DB-624 GC column
- Rapid Miner software
- Model optimization
- ACD/ChromGenius software

Training set
Reference chemicals (n=401, 2/3)

Test set
Reference chemicals (n=151, 1/3)

Model 2

Compound similarities

- TIC
- EI-MS
- Validation set
Reference chemicals (n=23)

- Model Assessment

- **Model Optimization**
 - \(y = ax + b \)
 - LRI\(_{predicted}\)
 - LRI\(_{experimental}\)
Accuracy Data for Predicted versus Experimental LRI Values

Accuracy (ACD/ChromGenius vs. experimental)

1,600
1,200
800
LRI experimental

180%
160%
140%
120%
100%
80%
60%
40%

Accuracy (RapidMiner vs. experimental)

1,600
1,200
800
LRI experimental

180%
160%
140%
120%
100%
80%
60%
40%

n=151 reference standards (Test set)
△ n=23 reference standards (Validation set)

r² = 0.949
Q² = 0.96

r² = 0.976
Residual std error = 53

Submitted in peer-reviewed Journal
LRI Prediction for the Complete UCSD Compound Library

- 6,053 molecules were predicted with LRI values between 500 - 1,900 (targeted for DB-624 GC column)
- 3,646 molecules (60%) have an EI Mass Spectra (NIST or Wiley)
- LRI values can be predicted from any compound databases
Non-targeted Screening Workflow for Aerosol Characterization

Data Acquisition

• CI full scan MS
• Targeted MS/MS

Data Acquisition (+EI)

Deconvolution

MassHunter Unknown Analysis Software

Identification

• Stop when found:
 → Fingerprinting_DB-624.xml
 (n~700 EI accurate mass & LRI_{expt.})
 → UCSD Library (n=3,646 EI nominal mass & predicted LRI)

Final Matching score

Low to MEDIUM

Final matching score

HIGH

Final Reporting

• Purchase of ref. std. if available
• Compound confirmation for new ones

Final Data review

Final report

Smoke sample

MetFrag (or MSC) in silico fragmentation software

LRI prediction of proposal hits
• Final ranking score
Case Study 1: Compound Identification with Accurate Mass Library

Easy compound confirmation if reference standard is already present within our Personal Compound Database accurate mass Library (PCDL, n~700)
Case Study 2: Problematic Hit Proposals

There is a need to develop alternative approaches when compounds are not registered in existing MS libraries.
Case Study 2:
GC-HR-MS in Chemical Ionization Mode & MS/MS

GC-HR-MS (Full Scan MS)
Positive Chemical Ionization (PCI)

Determination of elemental formula
(adduct ion species)

\[M: C_{11}H_{14}N_{2}O \]

GC-HR-MS (Full Scan MS/MS)
PCI data acquisition CID of 191.1184

MS/MS data processed using a larger chemical database
with *in silico* predicted fragmentation software

Ion threshold above 10% (n=6 ions)
In Silico Theoretical Fragmentation Software Evaluation: MetFrag

1) LRI values were predicted for all 100 proposals
2) Final ranking SCORE was calculated using:
 - MetFrag Score
 - LRI \text{expt.} Against LRI _RM
 - LRI \text{expt.} Against LRI _CG ...

3,932 hits! Search performed May 5th 2016

4,048 hits! Search performed May 19th 2016
In Silico Theoretical Fragmentation Software Evaluation: Molecular Structure Correlator (MSC)

1) MS/MS accurate mass spectra exported as .cef files
2) Open in MSC software
3) Several databases are available

- Elucidation of Product Ion Connectivity (EPIC) based-approach
- Systematic bond cleavages with a score penalty function

Calculated Elemental formula

Fragment ions interpretation

List of putative compounds

Different chemical databases available for search

m/z fragment ions & intensities imported values

True compound was ranked in 43rd position

Assessment for MetFrag *In Silico* Fragmentation

<table>
<thead>
<tr>
<th>PNG Image</th>
<th>Comment</th>
<th>ChemSpider ID</th>
<th>Mass</th>
<th>MetFrag Score</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unspecified stereochem.</td>
<td>1221410 (2z & 2E) 1221411 (2Z form) 4603758 (2E form)</td>
<td>190.1106</td>
<td>1.0000</td>
<td>1st</td>
</tr>
<tr>
<td></td>
<td>unspecified stereochem.</td>
<td>2045246</td>
<td>190.1106</td>
<td>1.0000</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1259330</td>
<td>190.1106</td>
<td>0.9860</td>
<td>3rd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1256481</td>
<td>190.1106</td>
<td>0.9860</td>
<td>4th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3716473</td>
<td>190.1106</td>
<td>0.9840</td>
<td>5th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>963178</td>
<td>190.1106</td>
<td>0.9840</td>
<td>6th</td>
</tr>
</tbody>
</table>

Usefulness to combine LRI prediction with MetFrag score

<table>
<thead>
<tr>
<th>PNG Image</th>
<th>LRI_pred CG</th>
<th>LRI_pred RM</th>
<th>LRI_exp</th>
<th>MetFrag & LRI_pred. SCORE</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>![image7.png]</td>
<td>1701.97</td>
<td>1763.39</td>
<td>1'784</td>
<td>0.930</td>
<td>1st</td>
</tr>
<tr>
<td>![image8.png]</td>
<td>1793.5298</td>
<td>1898.80</td>
<td>1'784</td>
<td>0.920</td>
<td>2nd</td>
</tr>
<tr>
<td>![image9.png]</td>
<td>1811.87</td>
<td>1891.95</td>
<td>1'784</td>
<td>0.916</td>
<td>3rd</td>
</tr>
<tr>
<td>![image10.png]</td>
<td>1820.33</td>
<td>1893.98</td>
<td>1'784</td>
<td>0.910</td>
<td>4th</td>
</tr>
<tr>
<td>![image11.png]</td>
<td>1637.96</td>
<td>1702.82</td>
<td>1'784</td>
<td>0.884</td>
<td>5th</td>
</tr>
<tr>
<td>![image12.png]</td>
<td>1634.80</td>
<td>1699.52</td>
<td>1'784</td>
<td>0.881</td>
<td>6th</td>
</tr>
</tbody>
</table>

5th proposal confirmed (ref. standard)

1st proposal confirmed (ref. standard)

Better discriminatory power
Interpretation of (1-Methyl-3-pyrrolidinyl)(3-pyridinyl)methanone MS/MS Spectrum Using MetFrag Software

5 out of 6 fragment ions were assigned by MetFrag software
MetFrag vs. Molecular Structure Correlator Software

<table>
<thead>
<tr>
<th>TRUE COMPOUND</th>
<th>(R,S)-1-methyl-3-nicotinoylpyrrolidine</th>
<th>2,3-pentanedione</th>
<th>2-pentanone</th>
<th>3-penten-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{11}H_{14}N_{2}O</td>
<td>C_{5}H_{8}O_{2}</td>
<td>C_{5}H_{10}O</td>
<td>C_{5}H_{8}O</td>
</tr>
<tr>
<td>RANKING NIST14 nominal classical search</td>
<td>not registered</td>
<td>Not present in hit list</td>
<td>1st</td>
<td>Not present in hit list</td>
</tr>
<tr>
<td>RANKING NIST14 with formula constraint</td>
<td>-</td>
<td>2nd</td>
<td>1st</td>
<td>Not present in hit list</td>
</tr>
<tr>
<td># Cpds NIST14</td>
<td>38</td>
<td>50</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td># Cpds ChemSpider</td>
<td>3,651</td>
<td>243</td>
<td>125</td>
<td>120</td>
</tr>
<tr>
<td># of Fragment ions (above 10%)</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>RANKING MetFrag</td>
<td>5th ranking</td>
<td>15th ranking</td>
<td>17th ranking</td>
<td>12th ranking</td>
</tr>
<tr>
<td>RANKING MSC</td>
<td>43th ranking</td>
<td>34th ranking</td>
<td>6th ranking</td>
<td>15th ranking</td>
</tr>
<tr>
<td>LRI expt</td>
<td>1'783</td>
<td>738</td>
<td>730</td>
<td>792</td>
</tr>
<tr>
<td>LRI (RM)</td>
<td>1763 (\Delta LRI=-20)</td>
<td>842 (\Delta LRI=+104)</td>
<td>714 (\Delta LRI=-16)</td>
<td>746 (\Delta LRI=-46)</td>
</tr>
<tr>
<td>LRI (CG)</td>
<td>1702 (\Delta LRI=-81)</td>
<td>771 (\Delta LRI=+33)</td>
<td>732 (\Delta LRI=+2)</td>
<td>770 (\Delta LRI=-22)</td>
</tr>
<tr>
<td>RANKING MetFrag & LRI pred.</td>
<td>1st</td>
<td>7th</td>
<td>3rd</td>
<td>4th</td>
</tr>
</tbody>
</table>
Conclusions & Next Steps

➢ Advantageous to combine state-of-the-art instrumentation with advanced chemoinformatic tools
 - LRI prediction models using both RM & CG software (algorithms) showed great results
 - Low differences between the two LRI models enhanced the confidence level for compound identification

➢ Existing MS libraries are not exhaustive and additional strategies need to be developed

➢ Targeted MS/MS combined with software to predict in silico fragmentation is mature
 - MetFrag software seems to be more reliable than Molecular Structure Correlator
 - Addition of LRI prediction values demonstrated a greater potential to correctly rank putative hits than in silico fragmentation alone
Conclusions & Next Steps (continued)

- This combined approach significantly reduces the amount of compounds purchased for absolute confirmation
 - Reducing the overall time for compound identification
 - Reducing the cost for purchasing chemicals
 - Minimizing the rate of false positive compound identification

- Complete automated data-processing has to be developed and validated in order to reduce the workload for Non-Targeted Screening applications
 - Final Ranking SCORE to be calculated on the fly (accurate mass results - LRI predictions)
 - Data fusion across volatile - semi-volatile & polar - apolar methods
Acknowledgments

Agilent Technologies
• Joerg Riener
• Tomi Hamalainen

Philip Morris International R&D*
• Complex Matrix Analysis (M. Bentley)
• Fingerprinting & Special Analysis Team
 • E. Dossin
 • P. Diana
• Computational Chemistry Team (P. Pospisil)
 • E. Martin
 • A. Castellon
• Aerosol generation staff (R. Reis Pires)

* Philip Morris Products S.A. (part of Philip Morris International group of companies)