Combined MS/MS Library Search Based Screening for Water Pollutants – A LRMS Alternative

Peter Tarábek

National Reference Laboratory, Water Research Institute, Nábr. arm. gen. L. Svobodu 7, 81249 Bratislava, Slovakia tarabek@vuvh.sk

Library	availability	#compounds original	#spectra original	selection	#compounds selected	#spectra selected
NIST 14 MS/MS	commercial	9,344	234,284	Matching InChlKeys in STOFF-IDENT	1217	27604
MassBank	http://www.massbank.jp/SV N/OpenData/record/	Unique compounds?	41,092	Direct link in STOFF-IDENT	1354	16436
EPA Starter	http://chemdata.nist.gov/ma ss-spc/ms- search/EPA_Starter.html	755	4064	Entire library	755	4064
BfR	http://www.bfr.bund.de/de/bfr_daten_fuer_die_mit_lc_ms_ms_analyse-5831.html	579	~4600	Pesticides not found either in NIST14 or MassBank (by matching CAS#)	218	231
in-house	-	30	260	Entire library	30	260

In order to perform a LC-MS/MS (with unit resolution) screening for water pollutants a sufficiently large but efficient mass spectral library should be available. Ion trap instruments are capable of generating tandem mass spectra — these are then searched within the library. In the presented study a combination of 5 libraries has been used for this purpose. To improve search performance and increase the relevance of hits only the compounds that are included in the STOFF-IDENT (database of environmentally-relevant substances) have been selected and fed into the combined library.

Analysis of water samples is carried out in "AutoMs(n)" mode. For a given retention time from a full MS scan, two highest MS peaks are selected for isolation and fragmentation. About 110 MS/MS spectra per min are generated this way. The amount of data produced during a 20 min LC/MS chromatographic run requires a high level of automation also in terms of data processing. A peak picking procedure (without deconvolution) specified within the processing method is followed by a library search of compounds resulting from the peak picking – all in one click. All search hits are thereafter inspected and evaluated based on spectral match, retention time – polarity relationships and isotopic patterns, where applicable. The described procedure represents a "quick-and-dirty" approach to untargeted screening of water pollutants.

Principal component analysis of 48 pollutants found in 12 samples.
Quantification is only relative - based on peak areas of extracted MS chromatograms. The three principal components explain together 77 % of the variance in the data set. The outliers clearly showing the highly polluted areas/sampling sites.

Frequency of occurrence of 99 pollutants found present in 61 samples collected in the years 2013-2015. The screening scope of pollutants is limited by the actual mass spectral library records.

Potential for future development: Increasing the number of compounds/spectra in the mass spectral library. Confirmation of structure assignments by reference standards plus quantitative analysis. Improvement of additional supporting methodologies – relating retention time to the structure of a solute, application of more isotope patterns etc.