

Eawag Seminar Invitation

The Coming Challenges of PFASs in Water and Soil: Implications for Human Exposure

•	Prof Christopher P. Higgins, Ph.D., Civil and Environmental Engineering, Colorado School of
	Mines, USA
	September 30, 16:00 – 17:00, CET
Where	Online via Zoom, contact <u>seminars@eawag.ch</u> for access details.
Abstract	The challenges posed by the widespread contamination of soils and groundwater by poly- and
	perfluoroalkyl substances (PFASs) are immense. Despite growing concerns about human exposure to
	perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), other PFASs, particularly those
	derived from aqueous film-forming foams (AFFFs) have garnered little attention. Recent work using
	high resolution mass spectrometry (HRMS) has revealed that there are dozens, if not hundreds, of
	additional PFASs that may be associated with AFFF-impacted sites. Importantly, many of these newly discovered PFASs have diverse chemical structures, including anionic, cationic, and zwitterionic
	structures. Some of these PFASs clearly remain bound strongly to soil, while other AFFF-derived
	PFASs, including transformation products, likely migrate into AFFF-impacted drinking water. In this
	seminar, the complexity of the challenges posed by the composition as well as the unique behaviors of
	PFASs will be presented and discussed. In addition, the implications of potential human exposures to
	these chemicals will be presented. Collectively, these data point to a need for a more comprehensive
	characterization of PFASs present in AFFF-impacted soils and waters, including their transformation and transport, and their potential impacts to human and ecological health.
	and transport, and their potential impacts to numeri and coological neath.