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Abstract 

Using the parameters associated with the best-fit simulation (i.e., the simulation with 

the highest objective function value) to represent a calibrated hydrological model is 

inadequate. The reason is that the calibrated model’s best objective function value is 

usually not significantly different from the next best value or the values after that. This 

non-uniqueness of the objective function values causes a problem because the best 

solution’s parameters are often significantly different from the next best set of 

parameters. Therefore, only using the best simulation parameters as the calibrated 

model’s sole parameters to interpret the watershed processes or perform further 

modeling analyses could produce misleading results. Furthermore, the lack of pristine 

watersheds makes the task of watershed-scale calibration increasingly challenging. 
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Subjective thresholds of acceptable performance criteria suggested by some 

researchers, based on comparing the measured and the best solution signals, are often 

not achievable. Hence, to obtain a satisfactory fit, researchers and practitioners are 

often forced to compromise the science behind their work. This article discusses the 

fallacy in using the best-fit solution in hydrologic modeling. A two-factor statistic to 

assess the goodness of calibration/validation is discussed, considering model output 

uncertainty.  

Keywords: Model Uncertainty, Calibration, Performance criteria, Stochastic 

calibration, Deterministic Calibration 

 

 

Distributed watershed models are input-intensive, requiring inherently uncertain data. These 

data include soil and landuse maps and databases, climate data, water use, watershed 

management data, and at the minimum, river discharge data for model calibration. These data 

are affected by almost all watershed activities such as agricultural activity, point sources, dam 

operation, river controls, various constructions, and water transfers. Given the highly 

uncertain input data, a watershed model’s calibration must be stochastic and consider 

uncertainties. However, deterministic approaches, which use a single set of model parameters 

associated with the best fit, are still widely used. These calibrated models are assessed by 

performance measures such as Nash-Sutcliffe (NSE), R
2
, and PBIAS, which compare only 

two signals. 

In contrast, stochastic solutions are generated by parameters treated as random variables and 

deemed acceptable if they fall within a behavioral threshold and have statistically similar 
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objective function values. In other words, if there is one good solution, then there are many, 

and they all constitute the solution to the calibration problem.   

The problem with the deterministic solution is not with the best fit but rather with taking the 

best fit’s parameter set as the actual parameters of the watershed model and using it in the 

interpretation of the watershed hydrology. Subjective Criteria rating the goodness of 

calibration or validation often include statements such as: (Very good: 0.75 < NSE < 1.00), 

(good: 0.65 < NSE < 0.75), (satisfactory: 0.5 < NSE < 0.65), or (Unsatisfactory: NSE < 0.50) 

(e.g., Moriasi et al., 2007). These criteria could be quite misleading if used in a deterministic 

way - that is, to search for one solution within the above ranges to regard a model as 

satisfactory or good. Instead, all solutions within these ranges should be sought and the 

associated parameters used for further analysis to quantify the uncertainties in the modeling 

works.  

The following points summarize the pitfalls of model performance criteria to rate the 

performance and uncertainty in a calibrated model. A SWAT (Soil and Water Assessment 

Tool) (Arnold et al., 2012) model example from a watershed in the Danube basin is used for 

illustration. 

First, model performance criteria only compare two signals, mainly observed versus the best-

fit simulation (Fig. 1a). The implicit assumption here is that the best-fit solution (Table 1, 

first row) represents the calibrated watershed model. Parameters associated with this solution 

are then used in subsequent analyses, such as calculating water resources, crop yield, and 

climate change impacts. This assumption is not correct as many significantly different 

parameter sets can produce statistically similar model performance criteria used as an 

objective function (Table 1, all ten rows). Taking only one of them, albeit the best one, to 
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represent the watershed could lead to entirely erroneous and misleading results. For example, 

calculating the watershed’s blue water resources represented by the top ten parameter sets in 

Table 1 leads to significantly different numbers ranging from 543 to 1575 mm.  

Second, model performance criteria, by their deterministic nature, ignore model uncertainty. 

Therefore, the deterministic subjective criteria cited above are not adequate for hydrologic 

models that consider model uncertainties.  

Third, watersheds are being increasingly disturbed with dams, reservoirs, water transfers, and 

accelerated landuse changes; hence, matching the output of a deterministic model with 

observation is becoming difficult. It is, therefore, necessary to compare an observation signal 

with uncertain model outputs distributions.    

A procedure to calibrate a model stochastically is summarized here and detailed in the 

references provided. 

Initially, model simulation is compared with observation to decide if the model is adequate 

for calibrating. Not complying with the correct neglect principle (Abbaspour et al., 2018) 

could render calibration meaningless if essential processes are missing from the model. Next, 

physically meaningful ranges are assigned to parameters chosen for calibration based on the 

initial model result (Abbaspour et al., 2015). Following a calibration protocol outlined in the 

latter reference, it will take a few iterations of around 200-500 simulations to calibrate a 

model. The final parameters have smaller ranges centered on the best model performance. At 

each iteration, the 95% prediction uncertainty (95PPU) is calculated (Fig. 1b) to quantify the 

effect of parameter uncertainties on model outputs, such as river discharge. Two statistics, 

referred to as P-factor and R-factor, quantify the calibration performance or the goodness of 

fit after each iteration. P-factor represents model accuracy and ranges from 0 to 1. In other 
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words, it is the percentage of measured data that falls inside the 95PPU band. By definition, 

(1 - P-factor) is the model error.  R-factor is the average thickness of the 95PPU divided by 

the standard deviation of the measured data and depicts model uncertainty. It can range from 

0 to a relatively large value. A value around 1 for the R-factor is equal to the standard 

deviation of the observation and is desirable. These two factors fully describe the 

performance of the calibrated model. The closer the P-factor is to 1 and the R-factor to 0, the 

better the calibrated model represents the measurements. Based on experience and only as a 

reference and not a criterion, we should bracket about 70% of the measured data in the 

95PPU band (P-factor ≥0.7, R-factor ≤1.5 ) for river discharge. Due to more considerable 

uncertainties in measuring and modeling sediment and nitrate loads, the reference P-factors 

could be smaller (≥0.5 or 0.4) and the R-factors larger ≤2 to 3).  

The example in Figure 1a shows a determinist case with an NSE of 0.47, an unsatisfactory 

model based on the subjective thresholds mentioned above. While taking model uncertainties 

into account (Fig. 1b), the calibrated model is more acceptable with P-factor = 0.73 and R-

factor = 1.1, assuming a 10% error in the flow measurement.  

In the above example, the subjective criteria of satisfactory, good, very good, or 

unsatisfactory are meaningless if model uncertainty is not quantified. A model with a best-fit 

NSE of 0.8 but with considerable uncertainty in the prediction could be unsatisfactory. 

Facing the difficulty of satisfying the subjective criteria leaves researchers in a predicament. 

On the one hand, they need to maintain their work’s scientific integrity by reporting the 

actual calibration results. On the other hand, they need to produce an acceptable calibration 

result to publish their work. Unfortunately, it is always the former that is sacrificed. 

Therefore, it is prudent to use schemes that compare a measured signal (or a distribution if 
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considering measurement errors) with a model output distribution. 
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Figure 1. a) Deterministic model results comparing the best-fit signal with observed data. 

NSE=0.47. b) Stochastic model results comparing the 95% prediction uncertainty (95PPU) 

with observed data. P-factor=0.73, R-factor=1.1. 
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Table 1. Model parameters and their associated objective function values (NSE) showing 

similar objective functions obtained with significantly different parameters.   

r__CN

2 

v__ESC

O 

v__GWQM

N 

v__GW_DELA

Y 

r__SOL_

K 

r__SOL_B

D 

other

s 

NSE 

0.03 0.72 558 77 0.14 0.82 - 0.47

0 

-0.08 0.85 779 53 -0.12 0.76 - 0.46

6 

-0.07 0.87 544 61 0.32 0.69 - 0.46

0 

0.13 0.80 333 64 -0.15 0.01 - 0.46

0 

0.11 0.70 1250 74 0.05 0.55 - 0.46

0 

-0.02 0.87 1232 41 0.00 0.05 - 0.44

5 

-0.08 0.78 890 76 -0.42 0.31 - 0.44

5 

0.22 0.72 1214 77 0.17 0.81 - 0.44

5 

0.11 0.73 337 53 -0.5 0.53 - 0.44

5 

0.28 0.71 811 49 0.09 0.39 - 0.44

5 

r__ represents a relative change, v__ represents a value change (see Abbaspour et al., 2007 

for details). 
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