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Abstract: To improve the resiliency of designs, particularly for long-lived infrastructure, current 
engineering practice must be updated to incorporate a range of future climate conditions that are likely to 
be different from the past. However, a considerable mismatch exists between climate model outputs and 
the data inputs needed for engineering designs. The present work provides a framework for incorporating 
climate trends into design standards and applications, including: selecting the appropriate climate model 
source based on the intended application, understanding model performance and uncertainties, addressing 
differences in temporal and spatial scales, and interpreting results for engineering design. The framework 
is illustrated through an application to depth-duration-frequency curves, which are commonly used in 
stormwater design. A change factor method is used to update the curves in a case study of Pittsburgh, PA. 
Extreme precipitation depth is expected to increase in the future for Pittsburgh for all return periods and 
durations examined, requiring revised standards and designs. Doubling the return period and using 
historical, stationary values may enable adequate design for short duration storms; however, this method is 
shown to be insufficient to enable protective designs for larger duration storms.   
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Introduction 
 

Record-breaking rainfall has triggered more 
than 20 severe flood events in parts of Texas, 
Oklahoma, Louisiana, Arkansas, Missouri, Iowa, 
Florida, North Carolina, and South Carolina in 
2015 and 2016. These events have led to the 
closure of two airports, flooding of more than 200 
homes, numerous evacuations, cars stalled in high 
water requiring rescue, and deadly flash flooding. 
High water also led to spillway activation to protect 
New Orleans, as well as structural failure of more 
than 100 roads and retaining walls (Erdman 2016). 
Existing infrastructure systems were inadequate to 
deal with these events, which occurred outside of 
historical experience frequency. Design standards 
rely on historical observations and the assumption 
that climate is stationary (i.e., climate will not 
change over time). However, recent events and 
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numerous simulations of future climate conditions 
indicate that the past is no longer a reliable 
indicator of the conditions under which 
infrastructure will have to perform in the future 
(Walsh et al. 2014; Milly et al. 2008).  

Climate change has the potential to affect 
infrastructure systems in multiple ways, including: 
(i) changes in average and/or extreme 
temperatures; (ii) variations in frequencies, 
intensities, and duration of precipitation causing 
extreme rainfall and flooding in some regions; (iii) 
changes in storm tracks and severe weather; (iv) an 
increase in sea levels and the risk of storm surge; 
and (v) a decrease of water availability in some 
areas (Walsh et al. 2014; IPCC 2014; Kilgore et al. 
2016). 

Recently, increased attention has been directed 
to infrastructure reliability (the ability of systems 
to remain functional during a disaster) and 
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resiliency (the ability to resist, absorb, and adapt to 
disruptions) (Faturechi and Miller-Hooks 2014). 
To ensure reliable and resilient infrastructure, 
engineering design standards must account for 
anticipated future conditions (Milly et al. 2008; 
Olsen 2015; Mailhot and Duchesne 2009; Moss et 
al. 2013; Barros and Evans 1997). These standards 
are set by organizations such as the American 
Society of Civil Engineers (ASCE) (ASCE 2013), 
agencies such as the Federal Highway 
Administration (FWHA) (Kilgore et al. 2016) or 
the National Oceanic and Atmospheric 
Administration (NOAA) (Bonnin et al. 2006), or 
by collaborations among organizations (e.g., 10 
States Standards (Wastewater Committee of the 
Great Lakes - Upper Mississippi River 2014)).  

One of the most advanced tools available to 
decision makers seeking to increase reliability and 
resilience of infrastructure is the use of high-
resolution, or “downscaled,” climate models. 
Compared to general circulation models (GCMs) 
that simulate global climate systems, these 
downscaled models provide insight into localized 
conditions by generating finer-scale (4 – 50 km), 
future projections of air temperature, precipitation, 
evapotranspiration, wind speed, and other factors 
that affect regional patterns (Hall 2014). Most 
models agree on the direction of temperature 
change; however, for precipitation there are 
variations in trend and magnitude across models 
and geographic regions, leading to large 
uncertainty in results. For precipitation data 
particularly there is often a mismatch in the spatial 
and temporal resolution of the downscaled climate 
model and the micro scale (e.g., < 1 km) of inputs 
needed for engineering design standards and 
applications. Furthermore, the use of climate 
models introduces uncertainties and complicates 
data extraction and preparation requirements, 
compared to the current use of recorded historical 
data. A clear path from climate model predictions 
to development of updated design standards is 
needed.  

Despite these challenges, by building on 
historical observations, scientists have successfully 
used global and downscaled climate models to 
inform higher spatial and temporal resolution 
precipitation trends for engineering applications. 
Weather generators, which can be adapted to 
different anticipated changes in climate, have been 
used to simulate synthetic, rainfall time series at the 

station (point) scale at monthly, daily and hourly 
time steps (Wilks and Wilby 1999; Kilsby et al. 
2007; Willems et al. 2013). Quantile mapping has 
been used to apply expected changes to the 
empirical distribution of observed rainfall events at 
the temporal and spatial resolution of the 
observations (Laflamme et al. 2016; Boé et al. 
2007; Gudmundsson et al. 2012; Wood et al. 2004). 
Numerous studies utilize a “delta” or “change 
factor” technique, which applies the expected 
absolute (delta) or relative (ratio) change between 
current and future gridded projections to historical 
rainfall data (Wilks and Wilby 1999; Boé et al. 
2007; Wood et al. 2004; K. Arnbjerg-Nielsen et al. 
2013; Forsee and Ahmad 2011). These climate-
informed local-scale models have also been used to 
update intensity-duration-frequency curves used in 
design of infrastructure affected by rainfall 
(Chandra et al. 2015; Cheng and AghaKouchak 
2014; Forsee and Ahmad 2011; Zhu 2012; Kuo et 
al. 2015; Hassanzadeh et al. 2013; Mirhosseini et 
al. 2013).  

Applications of these climate-informed 
methods can provide important insights; however, 
many reported studies provide insufficient detail 
regarding the importance and difficulty of 
obtaining a reliable historical record; selecting and 
extracting the appropriate climate output source; 
accounting for reliability and uncertainty in climate 
modeling; and incorporating findings into 
infrastructure planning and design. In the absence 
of a consensus on methods to update design 
standards to account for climate change, many 
stakeholders avoid the use of climate model output.  
Further, there is the potential for misuse through 
simplified choices, such as using output from a 
single climate model instead of an ensemble (or 
group) of models, or failing to account for model 
reliability and uncertainty in the interpretation of 
results. Given the widespread use of infrastructure 
design standards and the potential consequences to 
the public if they are improperly applied (including 
failure due to under-design or misallocation of 
taxpayer dollars due to overdesign), it is critical 
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that the most advanced and appropriate methods 
are used to update standards and that the challenges 
and limitations associated with this updating are 
well understood by those who will apply these 
techniques.  

With this problem in mind, a five-step 
framework is proposed that can guide the revision 
of design standards, as well as engineering 
practice, through the use of publicly available, 
downscaled climate model outputs of future 
precipitation. By applying the framework, 
engineers will be able to define relevant aspects of 
the historical method that need to be updated; select 
the relevant climate data sources and extract 
output; manage model reliability and bound 
uncertainty; adjust for spatial and temporal 
resolution, and apply results to engineering design 
under climate non-stationarity. In the present work, 
as a demonstration, the framework is applied to a 
common input to stormwater infrastructure design: 
depth-duration-frequency (DDF) curves. These 
curves and their application will determine the 
performance and resiliency of stormwater 
infrastructure during future extreme events. 

 
Framework Steps 
 

The steps of the framework for updating 
engineering design standards are: (0) Define the 
existing design standard (or application) that relies 
on precipitation information; (1) Understand the 
historical requirements for existing standard and 
retrieve data; (2) Access appropriate climate model 
output based on requirements for the existing 
application; (3) Account for climate model 
uncertainty and reliability; (4) Incorporate climate 
model output into the required engineering format; 
and (5) Interpret results and incorporate changes 
into design practice. A flow chart of these steps is 
presented in Figure 1. Solid arrows display the 
suggested sequence of the steps from 0 to 5; dashed 
arrows represent the flow of information or data 
from Step 1 to Step 4.  
 
Step 0. Define the existing design standard 
(or application) that relies on precipitation 
information 
 

Standards for engineering design have been 
developed for a variety of engineering applications 
that are expected to be affected by a non-stationary 
climate, including: water supply management, 

water quality regulations, flood forecasting, 
stormwater management, and wastewater 
collection and treatment. These and many other 
applications rely on different types of estimates of 
expected precipitation for a region. For example, 
floodplain delineation and stormwater 
management rely on duration-specific estimates of 
rainfall depth from intensity-duration-frequency 
(IDF) curves; whereas wastewater collection and 
treatment system design requires a peaking factor, 
usually relating to maximum daily or monthly 
rainfall.  

Some applications may require a time 
series for precipitation (a sequence of data points 
collected over a time period, usually provided at 
evenly spaced time intervals). These different 
specific precipitation data determine the type of 
modifications that will be needed, and thus, 
defining the ways that rainfall data are used in the 
current standard is the initial step to updating.  

Fig 1. Framework for incorporating downscaled climate 
data into existing engineering applications (Note: solid 
arrows display the suggested sequence of the steps from 
0 to 5; dashed arrows represent the flow of information 
or data from Step 1 to Step 4) 
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Step 1. Understand historical requirements 
for existing standard and retrieve data  
 

In this step, the engineer defines the nature 
of the data on which the design standard was based 
and obtains the historical data to enable re-creation 
of the supporting calculations underlying the 
current standard. Definition of the data includes 
the length of record, as well as the temporal and 
spatial resolution of the data required as input to re-
create the components of the method. These 
specifications are important as they dictate the 
source of climate output that will be needed in step 
2. Table 1 provides information on spatial and 
temporal resolutions required for analysis of 
several types of engineering applications and 
design standards. Large-scale optimization models 
used for reservoir or drought management use 
monthly or seasonal data, while stream flow and 
water quality simulations require daily or hourly 
data. Continuous hydrologic simulation models 
(e.g., Environmental Protection Agency (EPA) 
Storm Water Management Model (SWMM) 
(USEPA 2015)) use data at a sub-hourly time step 
and 1 km spatial resolution (Wood et al. 2000; 
Wilks and Wilby 1999), while IDF curves use 
multi-decadal time series of observed rainfall at 
individual geographic locations (point 
measurements) for durations ranging from 5 
minutes to 72 hours (CSA 2012; Bonnin et al. 
2006).  

In support of these different data needs, 
historical precipitation data, collected through rain 
gauges, can be obtained at the point or grid scale. 
Many regional airports and local stormwater 
agencies collect rain gauge data at specific 
locations (points), at hourly intervals or less. 
Airport records tend to be longest (50 to 100 years); 
however, local agency data may be available at 
higher resolution (sub-hourly, multiple gauge sites) 
for a shorter time period. Another paper suggested 
that the usefulness of a rain gauge network is 
dependent on the density of gauges, the number of 
years of data, the type of rain gauge, and frequency 
of data collection (Barros 2006). NOAA National 
Centers for Environmental Information (NOAA 
2016) provides rainfall data at the point scale, often 
at hourly intervals. 

Gridded rainfall data are also available 
using two methods. The first approach, which 
produces rainfall grids through interpolation of 
point measurements, is based entirely on the 
assumption of spatial correlation of rainfall point 
measurements. Thus, the accuracy is dependent on 
the spatial density of rain gauges and how terrain 
influences the correlation of precipitation 
measurements. The second method, called data 
assimilation, uses weather models to infer spatial 
correlation and temporal evolution of rainfall, and 
then when combined with point measurements, 
adjusts model-predicted rainfall toward observed 
values.

 

Table 1. Selected engineering design standard applications and the requirements of their precipitation data inputs 

 

Engineering 
application Example Analysis 

Requirements of rainfall data 

Format Spatial 
Tempora
l 

Water supply 
management 

Reservoir routing simulation and 
optimization (e.g. STELLA) 

Time 
series 

Basin scale (e.g. 1000 
km2) to point scale 
(<1km2) 

Seasonal 
to daily 

Water quality 
monitoring 

Water quality analysis simulation 
(e.g. streamflow simulation) 

Time 
series 

Riverine scale (10 km2 or 
less) 

Seasonal 
to hourly 

Flood forecasting Continuous hydrologic 
simulation (e.g. SWMM) 

Time 
series 

1 km2 or less Sub-
hourly 

Flood plain delineation (e.g. 
HECRAS) 

IDF Curve Point scale (< 1km2) Daily to 
hourly 

Stormwater 
management planning 

Peak discharge estimation (e.g. 
rational method, TR-55) 

IDF Curve Point scale (< 1 km2) Daily to 
sub-hourly 

Wastewater collection 
and treatment planning 

Wet weather flow estimation 
(e.g. Peaking factor) 

Monthly 
maximum 

Basin scale (e.g. 1000 
km2) to point scale 
(>1km2) 

Monthly 
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Table 2. Temporal and spatial characteristics of sources of re-analysis observations for North American domains 

Data Source Spatial scale Time-step Period of record Website 
NCEP North American Regional 
Reanalysis (NARR), 
NOAA Earth System Research 
Laboratory 

 
32 km  
 

3-hour, 
daily, 
monthly 

Jan 1, 1979 to Dec 
31, 2015 

https://www.ncdc.noaa.gov/data-
access/model-data/model-
datasets/north-american-regional-
reanalysis-narr 

Observation-reanalysis hybrid 
dataset, 
Princeton University  

1 degree (~110 km) 
1/2 degree (~55 km) 
1/4 degree (~25 km) 

3-hour, 
daily, and 
monthly 

Jan 1949 to Dec 
2010 

http://hydrology.princeton.edu/data.
pgf.php 

ERA-Interim Global Atmospheric 
Reanalysis, 
ECMWF 

80 km  daily, 
monthly 

1979 to present http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/ 

Parameter-elevation Regressions on 
Independent Slopes Model 
(PRISM), 
Oregon State University (USDA, 
NOAA) 

4 km daily 1895 to present http://www.prism.oregonstate.edu 

Variable Infiltration Capacity 
(VIC) Hydrologic Model, 
University of Washington 

1/8 degree (~12km) daily 1950 to 2000 http://www.esrl.noaa.gov/psd/peopl
e/ben.livneh/ 

 
 
By systematically merging numerous observations 
(available at different resolutions from rain gauges, 
satellites, or radar) with weather model output, data 
assimilation creates gridded precipitation data that 
is uniform and consistent with simulated weather 
conditions. These assimilation data sets are called 
“re-analysis” data. The quality of gridded data, 
especially relating to precipitation and extremes, is 
variable by location and time period, due to the 
changing combination of observation density and 
quality as well as model bias (Dee et al. 2011; Dee 
et al. 2016; Bosilovich et al. 2008; Sun and Barros 
2014).  

Reanalysis data are publicly available for 
multiple temporal and spatial resolutions for the 
North American domain (Table 2). Additional 
information can be found at the University 
Corporation for Atmospheric Research (UCAR) 
Climate Data Guide website (Dee et al. 2016) or at 
the reanalysis site maintained by the University of 
Colorado at Boulder (Reanalysis.org 2016).  

 
Step 2. Access appropriate climate model 
output based on requirements for the existing 
application 
 

Open source downscaled model output is becoming 
increasingly prevalent and diverse as data sources 
continue to emerge and climate models continue to 
evolve, yet model outputs are only publically 

available at specific spatial and temporal 
resolutions that may not be consistent with the 
resolution of the inputs required for the engineering 
application or standard. Model outputs are also 
only provided for specific historical and future 
dates, and the length of this simulation period may 
not be equivalent to the length of rainfall record 
(e.g., 50 - 100 years) utilized in some methods to 
inform standards. These higher spatial-resolution 
(4–50 km) outputs are created using downscaling 
models that reduce the coarse resolution of the 
global atmospheric models (GCMs) (75–250 km) 
that are used as input (Cooney 2012; Di Luca et al. 
2015; McGuffie and Henderson-Sellers 2001).  

Characteristics of the sources of downscaled 
model output differ as a result of three main 
factors: (1) choices made by climate scientists in 
the downscaling process, including the 
downscaling method and the number of GCMs 
and emissions scenarios used; (2) consequences of 
the computational power and data storage that were 
available to the climate modelers, affecting length 
of simulation, and temporal and spatial resolution, 
which are aspects most relevant to engineers; and 
(3) decisions made by the climate modelers to store 
and allow access to the data. The next step in the 
framework provides context and information to 
allow an engineer to select and extract downscaled 
data, most suitable to the engineering application, 
from the myriad of available sources. Figure 2 
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presents a comparison of characteristics of six 
publically available sources of downscaled climate 
model output for North America, which include:  
1. The North American Regional Climate Change 

Assessment Program (NARCCAP) 
[narccap.ucar.edu] (Mearns et al. 2008);  

2. The North American Coordinated Regional 
Climate Downscaling Experiment (NA-
CORDEX) [na-cordex.org] (Mearns et al. 
2013);  

3. The United States Geological Survey (USGS) 
regional climate model (RegCM3) 
[regclim.coas.oregonstate.edu] (Hostetler et al. 
2011);  

4. Eighth degree-CONUS (Continental U.S.) 
Statistical Asynchronous Regional Regression 
Daily Downscaled Climate Projections 
(ARRM) [cida.usgs.gov] (Stoner et al. 2013);  

5. The Downscaled CMIP3 and CMIP5 Climate 

and Hydrology Projections, from the Coupled 
Model Intercomparison Project (CMIP) 
versions 3 and 5 from the Bureau of 
Reclamation (and other collaborators) 
(Reclamation) [gdo-dcp.ucllnl.org] (Brekke et 
al. 2013); and 

6. Multivariate Adapted Constructed Analogs 
(MACA) [maca.northwestknowledge.net] 
(Abatzoglou and Brown 2012).  

As shown in Figure 2, model output from each of 
these sources varies depending on three main 
factors: Model Output Attributes, Model 
Simulation Choices, and Extraction and Access 
Features, which are discussed is subsequent sub-
sections. Approaching the figure from top to 
bottom, a downscaled model source is selected 
based on desired characteristics.  

 
Figure 2. Comparison of characteristics of six publicly available sources of downscaled climate model output for 
North America.  
 
Approaching from left to right, the user views 
available choices, attributes, and features for a 
particular data source. A climate modeler begins 

the downscaling process from far left column 
(selection of the global climate model group) then 
advances to the far right (providing access to 
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output). An engineer often begins the process of 
using climate model output at the far right 
(attempting to access the output) and subsequently 
makes choices from right to left. 
 

Model Output Attributes 
The process of selecting an appropriate model 
source should begin with the characteristics of the 
model output that are most relevant to the 
engineering application, such as the time step, 
or size of the grid cell (see Figure 2). For many 
water resources applications, the most limiting of 
these characteristics is the temporal resolution. 
Daily data is available from all sources; however, 
only Regional Climate Models, such as models in 
NARCCAP and NA-CORDEX projects, are able to 
produce rainfall output on a sub-daily level of 3-
hours or less. When the engineering application is 
not limited to a sub-daily time step, additional 
resources are available at the daily level through 
sources that utilize “empirical downscaling” 
techniques, which rely on existing statistical 
relationships between large-scale climate systems 
and local weather patterns (Abatzoglou and Brown 
2012; Khan et al. 2006; Murphy 1999; Chen et al. 
2013). These techniques are less computationally 
intense than Regional Climate Models (RCMs), 
and can provide higher resolution output (4 - 12 
km) for long simulation periods (1950 - 2100), and 
multiple emissions scenarios and global climate 
models (Cooney 2012).  

RCMs are able to provide a finer temporal 
resolution because they use a technique called 
"dynamical downscaling" that provides physical 
characterization of weather processes occurring on 
small scale and contributing to precipitation 
(Anderson et al. 2003; Xu 1999; Musau et al. 
2013). These models require large amounts of 
computational power and thus only limited 
scenarios (e.g., emissions) can be computed. For 
example, a 30-year, 50-km resolution simulation of 
the Water Resources Foundation (WRF) regional 
model on a supercomputer (with 240 processors) 
lasts for over 2 days; and a 150 year, 25 km 
simulation lasts for 90 days (Mearns et al. 2013). 
Prior to the release of NA-CORDEX in 2017, the 
requirement for a sub-daily time step restricted the 
user to NARCCAP data, a pioneering project that 
in 2006 compiled consistent output from numerous 
regional climate modelers across the globe. 

Modeling scenarios were limited to a single 
emission scenario (SRES A2), a relatively low 
resolution (50 km), and short simulation periods 
(30 years); meaning the end-user did not have 
flexibility to select different characteristics. NA-
CORDEX will provide longer simulation periods 
(1950 - 2100), a higher spatial resolution (25-km) 
and two emissions scenarios (RCP 4.5 and 8.5), 
providing more flexibility.  
 

Model Simulation Choices 
At the daily level, the user now has more flexibility 
to select a downscaled data source based on several 
data characteristics, including others that are 
relevant to engineering applications, like spatial 
resolution; as well as those in the first group in 
Figure 2, which are a result of model simulation 
choices made by climate scientists in the 
downscaling process: global climate model group, 
emissions scenarios, and downscaling technique.  

Global climate model group refers to the 
version of the CMIP that was used to evaluate the 
GCMs used for downscaling. Currently in its sixth 
phase (Eyring et al. 2016), the CMIP was 
established in 1995 as a standard experimental 
protocol to compare GCM outputs . Downscaled 
output discussed in this manuscript originated from 
global climate models from either: (i) the CMIP3, 
which used early generation models and many 
evaluations have been completed; or the (ii) 
CMIP5, which used more experimental GCMs, and 
has a shorter record of development and evaluation 
(Taylor et al. 2011). Comparison between CMIP3 
and CMIP5 indicates minor differences in future 
projections (Reichler and Kim 2008), and a large 
majority of comparisons do not address 
engineering-specific metrics (Wuebbles et al. 
2014). The Bureau of Reclamation dataset is the 
only source to provide output from both CMIP3 
and CMIP5 models. A compelling reason to prefer 
one over the other for precipitation analysis has not 
been presented, which means engineers have 
flexibility in choosing from either data set or a 
combination thereof, depending on which is best 
suited for their application.  

One may wish to select a downscaled data 
source based on the downscaling technique 
(dynamical or empirical); however, there is no 
consensus relating to which technique is superior, 
since both have advantages and disadvantages 
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(Prudhomme and Davies 2009; Fowler et al. 2007). 
Similar to the decision to choose between CMIP3 
and 5, a single reason to prefer one downscaling 
technique to the other does not exist, and engineers 
should select a source suitable for the engineering 
problem rather than accessibility of a particular 
data archive. 

Emission scenarios estimate the potential 
concentration of greenhouse gases (GHG) in the 
atmosphere, based on pathways of socio-economic, 
technological, and political factors. CMIP3 global 
models use emissions scenarios from the Special 
Report on Emissions Scenarios (SRES) 
(Nakicenvoic et al. 2000) created for the 
Intergovernmental Panel on Climate Change 
(IPCC) 3rd Assessment report (Houghton et al. 
2001); whereas, CMIP5 global models use 
emissions in the form of Representative 
Concentration Pathways (RCPs) (van Vuuren et al. 
2011) created for the IPCC Fifth Assessment 
Report (IPCC AR5) (IPCC 2012). When it is 
available to choose between multiple emissions 
trajectories, the authors recommend analyzing at 
least two scenarios when possible: (a) an upper 
bound that will provide the most conservative 
estimate of future conditions for use in engineering 
practice, such as SRES A2 (projecting 2.0 - 5.1 °C 
of warming by 2100) or RCP 8.5 (5-6 °C by 
2100), and (b) a lower bound that is aligned to 
targets of the Paris agreements (Framework 
Convention on Climate Change 2015), similar to 
SRES A1B and RCP 4.5. Choosing between 
emissions scenarios is most relevant for 
infrastructure of long lifetimes (40 years or more), 
since many impacts across emissions scenarios 
generally diverge after the middle of the century 
(Collins et al. 2013). Irrespective of the scenarios 
and model sources that are ultimately chosen by the 
engineer, it is important to document assumptions 
and make them available to those interpreting the 
findings.  

 

Extraction and Access Features 
Once a downscaled data source has been selected 
based on the desired characteristics (from Figure 
2), the user should extract the output at the spatial 
grid closest to the geographical location of interest, 
for a historical simulation period (usually one for 
which the user has historical data from framework 
step 1) and a future simulation period (for dates and 

length required for the engineering application). 
The user should obtain output from several climate 
models from within a data source in order to create 
an ensemble of downscaled model output. The 
initial ensemble should include all model 
simulations available for the selected emissions 
scenario(s), in order to accurately assess model 
performance and uncertainty, which is discussed in 
Step 3 of the framework.  

To access the output, some sources provide 
a user interface, including the USGS, Bureau of 
Reclamation, and MACA. The USGS (RegCM3) 
and Bureau of Reclamation websites allow for 
selection of multiple grid cells and provide 
spatially averaged time series at different time 
steps. NARCCAP, NA-CORDEX, and the ARRM 
sources do not have the guidance of a user interface 
and data must be extracted as individual files from 
a server. These files are usually available in 
netCDF (network Common DataForm) format, and 
require software packages (available in Excel, 
MATLAB, R, python) to extract the time series of 
data at the desired geographical location(s). 
Precipitation stored in netCDF files is often 
provided as instantaneous flux values (in units of 
kg/m2s), which is converted to precipitation depth 
over a time period by dividing by the density of 
water (1,000 kg/m³) and multiplying by the number 
of seconds in the time step.  

 
Step 3. Account for climate model uncertainty 
and reliability 
 

Step 3 of the framework addresses the importance 
of analyzing model performance and examines the 
possibilities for bounding uncertainty of the group 
or ensemble of models selected in step 2. 
Downscaled climate models are susceptible to 
large uncertainties, which can be inherited by 
GCMs, or introduced in the downscaling process. 
The three types inherited from GCMs include: (i) 
scenario uncertainty of future GHG emissions, (ii) 
natural (internal) climate variability (initial 
conditions), and (ii) inter-model discrepancies 
(modeling assumptions) (Kirtman et al. 2013). 
Natural or internal variability for precipitation 
contributes the most uncertainty in the early 21st 
century, whereas inter-model uncertainty makes up 
the largest majority after 2040 (Kirtman et al. 2013; 
Hawkins and Sutton 2011). Scenario uncertainty is 
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managed through the use of multiple emissions 
scenarios, described in step 2. Internal conditions 
uncertainty is bounded by producing several 
simulations using different initial criteria (Knutti et 
al. 2009; Musau et al. 2013). Most sources of 
climate output, however, only provide output from 
a single simulation (or an average of multiple 
simulations) for each climate model, with the 
exception being the Bureau of Reclamation dataset.  

Scientists recommend the use of multiple 
models, or a “model ensemble,” in order to avoid 
misleading conclusions from inter-model 
uncertainty (Barsugli et al. 2013), introduced from 
the GCMs or through the downscaling technique 
(Chen et al. 2011). However, which models to 
include in the ensemble will depend on the 
approach used to manage uncertainty, and possibly, 
the reliability of the climate models, discussed in 
the following subsections.  
 
Climate model reliability 
Climate models considered by scientists to be 
“more reliable” include those that are well 
documented, are well established (with many years 
to make improvements), and that produce stable 
results. Models may be considered less reliable if 
they produce output that is “biased” with respect to 
the observed metric(s). Bias (also referred to as 
model systematic error) is defined, in this context, 
as the average deviation between the observed 
value (or empirical statistic) and the values or 
statistics obtained from the historical climate 
model simulations. The deviation may be larger 
than zero for numerous reasons, including the 
assumptions and simplifications made in the 
modeling equations (of the global, regional, and/or 
statistical models). Bias can be overcome by 
changing internal modeling assumptions (although 
this often shifts bias in another direction) or 
through bias correction techniques applied to the 
simulated rainfall output. Bias is assessed through 
the comparison of observations to “hindcast” 
model simulations (i.e., simulation of historical 
conditions) at the spatial and temporal resolution of 
the climate model (Gleckler et al. 2008). While 
adequate performance in hindcasting is not a 
guarantee of reliability for future predictions, poor 
performance with historical conditions can be used 
to identify unrealistic models. For regional climate 
models, these hindcast runs are driven by historical 

data, which is different from simulating the past 
using atmospheric conditions of GCMs. Hindcast 
runs are expected to be temporally consistent with 
historical data.  

Nearly all models exhibit some instances 
of bias; however, the magnitude varies depending 
on the metric, season, and models examined (Hall 
2014). NARCCAP regional climate models, which 
have not been bias-corrected, were able to estimate 
mean annual precipitation with relative precision 
(exhibiting low bias); however, extreme 
precipitation statistics (e.g., annual maxima, 20-
year return period) were often overestimated. The 
Weather Research Forecasting Model (WRFP), 
from NARCCAP, exhibited especially high bias 
for extremes, as the percentage error of the average 
maxima precipitation and the 20-year return value 
was greater than 90% for nearly all seasons and US 
regions (Wehner 2013). A study that examined 3-
hour precipitation totals found that the Iowa State 
model (MM5) and the Scripps model (ECP) 
outperformed the Hadley model (HIRHAM), the 
Regional Climate Model (RegCM2), and the 
Canadian model (CRCM) (Anderson et al. 2003).  

Statistical downscaling techniques usually 
account and correct for bias in the downscaling 
process; however, for a given metric, some 
techniques have been shown to outperform others. 
For extreme values, output from the ARRM 
statistical downscaling method, which includes 
bias-correction and cross-validation, showed 
improved accuracy and ability to be efficient and 
generalizable across regions (Stoner et al. 2013). 
For precipitation (and other variables), the MACA 
method has been found to outperform the Bias-
Corrected Spatial Disaggregation method (BCSD), 
used to create the Bureau of Reclamation dataset, 
due to the ability to jointly downscale certain 
variables (Abatzoglou and Brown 2012). 
 

Bounding Uncertainty 
The approaches used to manage uncertainty are: 
the extremes approach, the ensemble approach, and 
the validation approach. The extremes approach 
examines the full range of future scenarios by using 
all output extracted in step 2; however, drawbacks 
include the time and effort expended to consider all 
models; and the possibility that the full range of 
models may produce an unrealistic representation, 
since some models may be unreliable (Fowler et al. 
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2007). The ensemble approach uses a weighted 
average of the climate model ensemble to develop 
a probability distribution of the range. However, 
there is no consensus on the minimum and 
maximum number of models to consider in this 
ensemble (Mote et al. 2011). One study found that 
skill converged after six or more models were 
included (Pierce et al. 2009). It is possible to 
weight models equally or based on reliability 
criteria. Wehner (2013) found that averaging the 
ensemble using complicated weighting schemes 
was not more effective than simply removing the 
unreliable or poorly performing models. 

The validation approach is the final 
approach to managing uncertainty and involves 
“culling” the ensemble by removing unrealistic 
models based on performance criteria (Charles et 
al. 1999; Flato et al. 2013; Mote et al. 2011). Some 
studies have demonstrated that ranking the models 
based on performance leads to a difference in 
predictions (Gleckler et al., while others have 
shown that the differences due to model culling is 
slight (Mote et al. 2011); however, one study found 
that results for a precipitation metric were nearly 
indistinguishable between the average of the 11 
best performing GCMs and 11 randomly selected 
GCMs, from the CMIP3 ensemble (Knutti et al. 
2009). For engineers, however, culling may be an 
appropriate avenue in order to reduce ensemble 
size. While all uncertainty approaches provide 
utility, it must be highlighted that any estimation of 
uncertainty from a range of climate models will 
never provide perfect insight into the full spectrum 
of possible futures (Mote et al. 2011). The engineer 
should decide which approach is best suited to their 
application then clearly state all assumptions.  
 
Step 4. Incorporate climate model output into 
the required engineering format  
 

After the ensemble of desired climate models has 
been selected, the precipitation data projected by 
these models for the relevant future time frame 
must be incorporated into the existing method for 
developing the design standard (or application). 
Since climate model output is provided at a 
“gridded” resolution (4 km or higher), this step will 
often require adjustment of the model output to an 
even finer spatial resolution (e.g., < 1 km2). Model 
output may also need adjustment temporally, to 

obtain a smaller time step. These adjustments are 
accomplished using additional downscaling or 
disaggregation techniques (Durrans et al. 1999) 
that depend upon the required format of the 
precipitation data needed to update the specific 
design standard. In order to adequately account for 
the range of uncertainty from the selected climate 
models, these further downscaling techniques 
should be applied individually to each model 
output before averaging and should not be applied 
to the average of the outputs, since this method 
filters data variation (Wehner 2013).  

As discussed in step 1, sometimes the 
engineering application explicitly requires high-
resolution time series (e.g., at the station scale, or 
at intervals smaller than 3 hourly) for analyses like 
streamflow simulation or flood forecasting. In this 
case, further statistical downscaling techniques 
must be applied to the ensemble that was selected 
in steps 2 and 3. Statistical downscaling methods 
include applying transfer functions, weather 
generators, weather typing, or quantile-mapping to 
the gridded, downscaled model output (Wood et al. 
2004). Weather generators use empirical 
relationships calculated from observations to 
simulate synthetic time series for rainfall data 
(Andréasson et al. 2004; Chen et al. 2015). 
Weather typing, or resampling, involves relating 
the weather patterns of the larger scale climate 
model to observed patterns in the local area 
(Prudhomme et al. 2002; Onof and Arnbjerg-
Nielsen 2009). Quantile mapping, also used for 
bias-correction, matches the empirical quantiles of 
re-gridded historical data to those of the historical 
climate simulation, then adjusts the future climate 
simulation based on the difference between the 
historical data and simulation (Boé et al. 2007; 
Laflamme et al. 2016; Gudmundsson et al. 2012).  

If the engineering design application does 
not require a high-resolution time series, it may be 
possible to avoid using complex downscaling 
techniques. If the engineering method is instead 
based on a statistical analysis of the observed data 
(like IDF curves), statistics or methods may be 
altered instead of the rainfall timeseries. The 
change factor approach and the bias-correction 
approach have been employed to adjust statistical 
metrics. The change factor, or delta change, 
approach adjusts an observed statistic (usually at 
the point scale) to a future date using a ratio or 
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percentage that is calculated from the gridded, 
climate model output (Forsee and Ahmad 2011; 
Zhu 2012). Bias correction modifies the future, 
gridded value from the downscaled climate model 
based on the difference between the observed 
statistics (point scale) and past model simulation 
statistics (grid scale) or hindcast simulation 
statistics (grid-scale) (Arnbjerg-Nielsen et al. 
2013; Boé et al. 2007; Chen et al. 2015; Wilks and 
Wilby 1999; Wood et al. 2000). Quantile mapping 
may be employed as a bias-correction technique 
(Boé et al. 2007). Detailed methods to accomplish 
this are described in the example section for depth-
duration-frequency curves.  

 

Step 5. Interpret results and incorporate 
changes into design practice 
 

At this point in the framework, the user should have 
been able to incorporate trends from an ensemble 
of downscaled climate model outputs into an 
existing design standard or engineering 
application, producing a range of resulting 
scenarios. To make use of the range of results that 
incorporate future climate scenarios, current 
engineering practice must evolve to incorporate 
principles relating to uncertainty and risk. 
Uncertainty may be addressed using exhaustive or 
simplified approaches that build on the climate-
model results. Robust Decision Making (RDM) is 
a technique based on principles of minimizing 
regret and achieving acceptable thresholds. RDM 
involves testing future designs against the full 
plausible range of futures obtained from step 4 
(Groves and Lempert 2007; Hallegatte 2009; 
Lempert 2013; Espinet et al. 2015). Researchers 
are increasingly using RDM to address the 
challenge of uncertainty associated with climate 
change; however, these methods can be 
computationally intensive and may not be 
appropriate for all applications. Other approaches 
to addressing uncertainty include defining an 
acceptable risk level in order to select a design 
value or strategy from a range of possibilities 
(Karsten Arnbjerg-Nielsen 2011; Hallegatte 2009; 
Hallegatte 2014). When applying either method, 
decision-makers should favor strategies that are 
adaptable, reversible, or have no- or low-regret 
characteristics, meaning they provide benefits even 
if impacts of climate change are not as severe as 
projected (Hallegatte 2009; Olsen 2015).  

In addition to uncertainty, engineering 
designs will also need to better incorporate 
principles of non-stationarity. This means 
addressing the fact that the infrastructure system is 
subject to one or more shifts in exogenous factors 
(climate, land-use, demand patterns) over the 
course of the operating lifetime (Kilgore et al. 
2016). Best practices may include: (i) testing for 
non-stationary trends (before assuming them), (ii) 
explicitly defining the final year in the future that 
the structure is designed to operate to, with 
adequate performance, and (iii) defining what 
adequate performance means for each structure. 
The Mann-Kendal (MK) test can be used to detect 
a non-stationary trend in an underlying distribution 
(Cheng and AghaKouchak 2014; Katz 2013; 
DeGaetano 2009; Kilgore et al. 2016). If detected, 
non-stationarity can be addressed by expressing 
one or more parameters or variables as a function 
of time (Katz 2013); however, such factors must be 
calibrated and verified.  

 
Application of Framework: Depth-
Duration-Frequency Curves 
 

The next section illustrates the framework as 
applied to rainfall duration frequency curves, using 
Pittsburgh, PA as a case study. The application 
focuses on updating of depth-duration-frequency 
(DDF) curves, which are a form of IDF curves that 
present rainfall as a depth (inches or mm), rather 
than an intensity (inches or mm per unit time). Each 
step describes the decisions made in order to update 
the curves to reflect future trends and uncertainties, 
following the framework. 
 

Step 0. Define the existing design standard 
(or application) that relies on precipitation 
information 
 

DDF curves provide estimates of the depth of 
rainfall that characterizes the potential for extreme 
storms to occur in a particular region. Storms are 
differentiated based on their duration and 
frequency, or probability, of occurrence. Duration 
refers to the length of time that precipitation 
occurs, and is selected by the engineer based on the 
length of the design storm (or time of 
concentration) used to calculate stormwater runoff 
for a specific method, e.g., the rational method, 
Technical Release-55 (TR-55). Frequency of 
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occurrence is described as either: (i) an exceedance 
probability, which is the probability that an event 
of specific duration and depth will be exceeded in 
one time period (often 1 year), or (ii) a return 
period, or recurrence interval, which is the inverse 
of the exceedance probability, defined as the 
average length of time between events of the same 
depth and duration (McCuen 2005). When the time 
period is equal to one year, the rainfall depth 
expected for a storm of 24-hour duration and 25-
year return period is equivalent to the depth of 
precipitation over 24 hours that has a 4% chance of 
being exceeded in any year.  The return period is 
selected by stakeholders based on the acceptable 
risk level for a design to fail or be inundated. 
Frequency curves for use in design standards are 
created regionally in the U.S. by NOAA, available 
from the NOAA Atlas 14, which consists of a 
compilation of precipitation frequency estimates 
for all U.S. states and political entities (Bonnin et 
al. 2006; PennDOT 2011). The north and southeast 
regions of the continental US have been recently 
updated (2015 and 2013, respectively); however, 
many western regions (e.g., Montana, Washington, 
Oregon) have not been updated since 1973 
(Hydrometeorological Design Studies Center and 
NOAA’s National Weather Service 2016). It is 
important to recognize, however, that significant 
challenges exist with these curves due in large part 
to the spatially sparse observed data used to cluster 
regions with similar characteristics of extreme 
rainfall (Barros 2006).  

 

Step 1. Understand historical requirements 
for existing standard and retrieve data  
 

DDF curves have historically been created based 
on the underlying distribution of extreme events 
that occur in long time series (50 to 100 years) of 
observed rainfall. This process is applied at 
different durations of rainfall (5 minutes to 72 
hours) by aggregating the data to the appropriate 
interval before analysis. Two methods are used to 
extract the extreme events, also known as block 
maxima or tails, including: Annual Maximum 
Series (AMS), where the maximum event for each 
duration storm is extracted for each year of record, 
or Partial Duration Series (PDS), where all values 
are taken above a threshold (Kilgore et al. 2016; 
Bonnin et al. 2006; CSA 2012). The PDS method, 
also known as Peaks Over Threshold (POT) is able 

to account for multiple extremes that may occur in 
a single year and is useful for short periods of 
record; however, thresholds may be difficult to 
select, and events within a year may not be hydro-
meteorologically independent (Beguería 2005). 

AMS data points are often fit to a 
Generalized Extreme Value (GEV) distribution, 
described by location, µ, scale, σ, and shape, ξ, 
parameters (Visser and Petersen 2012; Bonnin et 
al. 2006; Coles 2001; CSA 2012). The shape 
parameter (which can be greater than, less than, or 
equal to zero) determines the form of the 
distribution (e.g., Gumbel (Type I), Frechet (Type 
II) or Weibull (Type III)) (Coles 2001). GEV 
parameters may be estimated using maximum 
likelihood techniques (Katz 2013; CSA 2012). 
When using the AMS method, the rainfall depth for 
a given duration and return period, i.e., the 
recurrence interval depth (zp), is found by relating 
the GEV parameters to the probability, as presented 
in Equation 1a and 1b. 

z" = 	
µ −

σ
ξ
1 − y"

	+, , for	ξ ≠ 0	

µ − σ log y" , for	ξ = 0	
													

	 1a
[1𝑏]

 

where yp = -log(1 – p), p is the probability of 
exceedance in any year, and µ, σ, and	ξ are the 
location, scale, and shape parameters of the GEV 
distribution, respectively (Coles 2001). 
 

Step 2. Access appropriate climate model 
output based on requirements for the existing 
application  

 

DDF curves are calculated for short duration (5 
minutes to 12 hours) as well as long duration (24 to 
72 hours) events.  The statistically downscaled 
datasets (e.g., Bureau of Reclamation, ARRM, 
MACA) are suitable for long durations at the daily 
level or higher. However, the dynamically 
downscaled datasets (e.g., NARCCAP and NA-
CORDEX) are more appropriate for this analysis, 
as they allow calculation of curves at shorter 
durations (e.g., the 3-hourly interval and greater). 
Sub-hourly durations would require additional 
temporal disaggregation or extrapolation 
techniques not undertaken in this demonstration.  

NA-CORDEX output is recommended for 
use over NARCCAP, if available, since some 
models are available at finer temporal and spatial 
resolution (e.g., hourly, 25 km) and a longer 
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simulation period is available (1950 – 2100). 
However, at the time of this study, NA-CORDEX 
outputs were not yet available; thus, NARCCAP 
outputs were used. NARCCAP precipitation 
projections are produced using a single emissions 
scenario (SRES A2) at a 3-hour time step and 
spatial resolution of 50 km. Since only a single 
emissions scenario is available, this analysis does 
not account for scenario uncertainty; however, the 
A2 scenario is at the upper end of SRES scenarios 
and represents a conservative estimate of the 
future. Precipitation output were extracted for the 
single grid cell with the centroid nearest to the 
Pittsburgh International Airport (40.49° N, 80.24° 
W). Grid point maps are available to relate the 
geographical location of the grid cell to the 
associated (x,y) coordinates in the NetCDF data 
matrix. NARCCAP data were extracted for 11 
available RCM-GCM simulations, which are 
regional climate model simulations (from six 
different RCMs) that use 1-2 global climate models 
as input. Simulations are available for historical 
(1970 – 2000) and future (2040 – 2070) periods 
(see Table 3). Data was also extracted for 6 
hindcast runs, which are output from the RCMs 
after they were driven by historical reanalysis data 
(instead of a GCM).  Time series were extracted for 
a single grid cell after downloaded data files 
(available in 5 year intervals for North America) 
were concatenated (Zender et al. 2016). 

 
Step 3. Account for climate model uncertainty 
and reliability 
 

The reliability of an ensemble of regional 
climate models can be assessed by comparing 
hindcasts of the regional models to historical 
observations. For NARCCAP, the re-analysis data 
are from the National Centers for Environmental 
Protection (NCEP) North American Regional 
Reanalysis (NARR) dataset (see Table 2). The 
reanalysis data act is input to the Regional Climate 
Model, and outputs from the Model, referred to as 
NCEP driven runs, are expected to reflect historical 
conditions. Reanalysis driven outputs are available 
on a 50-km resolution, 3-hour time step, for the 
time period from 1979 – 2006.  

In this study, the reliability of the 

NARCCAP RCMs was assessed by comparing the 
empirical distributions of the reanalysis outputs of 
the six regional climate models to those of 
observations obtained from the local stormwater 
authority in Pittsburgh (3 Rivers Wet Weather, 
2015). Before comparison, the observed data, 
recorded on a 15-minute interval at 33 rain gauges 
throughout Allegheny County (area of 1,930 km2), 
was first scaled to the resolution of the reanalysis 
output (3-hour, 50-km) by aggregating to a 3-hour 
interval then averaging gauges within the 50-km 
grid cell.  

The 3-hour exceedance probability, which 
represents the likelihood that a rainfall event of a 
specific volume will occur in a 3-hour period, was 
selected as the metric of comparison to represent 
the empirical distribution of both precipitation time 
series. The exceedance probability for each rainfall 
depth above zero (in the reanalysis and adjusted-
observed time series) was calculated using a 
Weibull distribution, commonly used in 
precipitation analyses. Exceedance probabilities 
from the scaled-observations were plotted against 
those from the hindcast output (NCEP driven runs).  

Uncertainty was bounded using the validation 
approach, which uses a performance or reliability 
analysis to select (or “cull”) models to include in 
the final ensemble. Three NARCCAP RCMs were 
selected, or culled, based on the visual proximity of 
the reanalysis exceedance curve to the adjusted-
observed curve (Figure 3). The five RCM-GCM 
simulations available from the three selected 
RCMs were used in the subsequent analyses (Table 
3).  
 

Step 4. Incorporate climate model output into 
the required engineering format  
 

After the performance assessment, data 
from downscaled models may be integrated into 
future DDF curves. Future trends may be 
incorporated in one of several steps taken to obtain 
the DDF values, including to: the underlying time 
series of the data record, the extreme value series 
(AMS or PDS), the GEV distribution, or directly to 
the return level intensities calculated from the 
distribution. 
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Fig 3. Comparison of 3-hr exceedance probabilities from 6 NCEP driven RCM runs in the NARCCAP ensemble (solid 
line) to observations re-gridded to 3-hr, 50km resolution (dashed line) for a grid cell in Pittsburgh region (1979–2014) 
 

The first approach involves complex 
statistical downscaling techniques to obtain the 
appropriate temporal and spatial resolution of the 
time series. However, it has been hypothesized that 
if the engineer is only concerned with designing for 
extremes, it may be more manageable to avoid 
downscaling to a continuous time series, and 
instead adjust empirical quantiles through mapping 
functions (Hassanzadeh et al. 2013). A simple 
method that has been introduced in the engineering 
literature involves directly adjusting historical 
rainfall depths at the point scale, for a given return 
period and duration, based on the expected change 
from historical to future conditions at the grid scale 
(Zhu et al. 2012; Forsee and Ahmad 2011). Areal 
reduction factors have been employed to adjust the 
station scale rainfall, as reported by Zhu et al 
(2012), and summarized here in Equation 2. 

𝐼<
= 𝑇, 𝑑 = 	 𝐼@

= 𝑇, 𝑑 	AB
C D,E

AF
C D,E

    [2] 

	where I denotes the intensity for a given return 
period (T) and duration (d), at the station scale (s) 
or grid scale (g), for future (F) or historical (H) time 
periods.  

In this analysis, climate signals are 
incorporated into regional DDF curves using areal 
reduction factors applied to historical depths at the 
station scale. This process has three stages: (1) 
historical DDF curves were recreated for the 
historical period available from the climate models 
(1970 – 2000) using airport station data (obtained 
from NOAA National Centers for Environmental 
Information); (2) change factors, or areal reduction 
factors, were calculated from DDF curves 
estimated from historical and future RCM gridded 
outputs; and (3) the change factors were applied to 
update historical curves. Steps (1) and (2) utilize 
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the same method for creating DDF curves, but on 
the native resolution of each data set. For the 
historical (1970 – 2000) and future (2040 – 2070) 
periods, return period depths values are calculated 
for the 3-, 6-, 12-, 24-, 48-, and 72-hour durations 
and the 2-, 5-, 10-, 25-, 50-, and 100-year return 
period. The moving window approach is applied to 
sum the underlying time series to the appropriate 
duration to obtain the annual maximum series. The 
AMS of each duration are fit to a GEV distribution 
using the method of moments and recurrence 
interval depths were calculated using Equation 1 
for each 30 year period (1970 – 2000) and (2040 – 
2070). GEV distributions are fit independently for 
the airport station data and each RCM. Change 
factors were calculated separately for each model 
as the ratio between the future and historical 

gridded recurrence interval depths, and are applied 
to historical depths using Equation 2.  

This simplified method is used solely for 
demonstration purposes of this framework. The 
method may be appropriate for understanding 
potential future trends in precipitation-frequency 
relationships; however, it is not a reliable 
alternative to more rigorous methods that alter the 
extreme value series or the GEV distribution 
parameters (Mailhot and Duchesne 2009; 
DeGaetano 2009; Cheng and AghaKouchak 2014; 
Shahabul Alam and Elshorbagy 2015). In the near 
future, NA-CORDEX will be available for a 
continuous time period (1950 – 2100) and could be 
used to inform a general trend in the future GEV 
distribution, notably the location parameter. 

 
Table 3. Regional Climate Models and Associated GCM Drivers Composting the NARCCAP Source of Downscaled 
Model Output; ECPC, and MM5I were Selected After Reliability Analysis (Step 3) 

Model Full Name Modeling Group GCM Driver 
CRCM 

 
Canadian Regional Climate 
Model OURANOS / UQAM 

CGCM3 (Third Generation Coupled Global 
Climate Model) 

CCSM (Community Climate System Model) 

ECPC (ECP2) 
Experimental Climate 
Prediction Center Regional 
Spectral Model 

University of California-
San Diego & Scripps 
Institute of Oceanography 

GFDL (Geophysical Fluid Dynamics 
Laboratory GCM) 

HRM3 
Hadley Regional Model 
3/Providing Regional 
Climates for Impact Studies 

Hadley Centre 

HADCM3 (Hadley Centre Coupled Model, 
version 3) 

GFDL (Geophysical Fluid Dynamics 
Laboratory GCM) 

MM5I MM5 – PSU/NCAR 
mesoscale model Iowa State University 

CCSM (Community Climate System Model) 
HADCM3 (Hadley Centre Coupled Model, 

version 3) 

RCM3 Regional Climate Model 
version 3 UC Santa Cruz 

GFDL (Geophysical Fluid Dynamics 
Laboratory GCM) 

CGCM3 (Third Generation Coupled Global 
Climate Model) 

WRFP 
(WRFG) 

Weather Research & 
Forecasting Model 

Pacific Northwest National 
Lab 

CCSM (Community Climate System Model) 
CGCM3 (Third Generation Coupled Global 

Climate Model) 
 
Step 5. Interpret results and incorporate 
changes into design practice  
 

Non-stationary conditions imply that the return 
period of an event will change with time. Mailhot 
and Duchesne (2009) state that design criteria 
under non-stationary conditions should explicitly 
consider (1) the expected lifetime of the structure, 
(2) that the probability of exceeding the design 
capacity and risk threshold will change over time, 
and (3) a statistical model that describes the 

expected evolution of intense rainfall over time. 
The latter comes from the previous steps outlined 
in this framework and will include bounds of 
uncertainty represented as a range of plausible 
values for a given return period and duration. It is 
the responsibility of regulating agencies to provide 
guidance on which design value to choose within 
the range. Traditionally, design criteria have 
focused on selecting values as close to the expected 
value as possible, i.e. the mean of the range, 
assuming a normal distribution. One study 
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suggested that design levels should be selected as 
the higher-than-median-percentile of the design 
criteria in question (Karsten Arnbjerg-Nielsen 
2011). Some argue that it is not possible to 
characterize the distribution and confidence 
intervals of the uncertainty, and an appropriate 
value cannot be selected independent of the 
decision being made (Hallegatte 2014). The 
authors of this study propose that instead of 
providing a single suggested value (and associated 
confidence intervals), agencies could provide two 
suggested values: a lower value, like the median of 
the range, and a upper value, like the 75th quantile, 
which could be used in either low or high-risk 
situations, respectively.   

To address considerations (1) and (2) 
regarding infrastructure lifetime and changing risk 
level, Mailhot and Duchesne (2009) propose that 
the design engineer will need to establish two 
criteria: (1) the critical return period, the return 
period that the structure is designed to withstand, 
and (2) the reference year, the year in the future 
when the critical return period is reached. Values 
of the critical return period and the reference year 
will set expectations for the period of time expected 
for over design (if reference year is closer to end of 
lifetime) or under design (if reference year is closer 
to year of initial operation).  

Mailhot and Duchesne also suggest that 
more severe guidelines are needed for 
infrastructure with long expected lifetimes (e.g., 
higher critical return periods and longer reference 
years), since these structures could experience 
extreme shifts in climate towards the end of life, at 
which they are most vulnerable to failure do to age 
and degradation of materials. Furthermore, where 
uncertainty in projections is especially high, 
designers may choose to select a shorter reference 
year to allow for adaptations to be implemented 
once conditions become more apparent. The 2009 
study and the present authors stress the importance 
of implementing recurring performance 
evaluations of the drainage system in order to 
expose evolving system vulnerabilities. Adaptation 
strategies over time will be required to maintain an 
acceptable service level.  

 
Results and Discussion of Framework 
Application 
 

The following section focuses on results from steps 
3 through 5 of the applied framework for the 
Pittsburgh, PA case study. From Step 3, 
performance analysis of the NARRCAP regional 
climate models; from Step 4, application of the 
change-factor to existing depth-duration-frequency 
curves; and from Step 5, relevance for stormwater 
design inputs and risk.  

Figure 3 presents results from the performance 
analysis of the RCMs. The analysis compared the 
3-hr exceedance probabilities from each of the six 
hindcast RCMs (NCEP driven runs) (1979 – 2006) 
to the exceedance probabilities of aggregated 
observations for the Pittsburgh region (2004-
2014). The dashed line represents the 3-hour 
exceedance probability for the aggregated 
observations and the solid line represents the 3-
hour exceedance of the hindcast RCMs. Proximity 
of the solid line to the dashed line represents 
similarity in the underlying empirical distributions 
and thus a higher skill of the RCM to represent 
historical statistics. These results show that for 
southwestern Pennsylvania, the Hadley Centre 
RCM (HRM3), Iowa State University RCM 
(MM5I), and University of California (UC) San 
Diego/Scripps RCM (ECP2) performed best in 
comparison to the other models, since these curves 
more closely agree with the dashed line (observed 
data). The Canadian RCM 
(CRCM) underestimates precipitation volume after 
the 1% exceedance probability, whereas the RCMs 
from UC Santa Cruz (RCM3) and from the Pacific 
Northwest National Laboratory (WRFG) 
overestimated the 3-hour precipitation depth after 
the 0.5% exceedance probability. Based on these 
visual results, the RCMs from the Hadley Center 
(HRM3), Iowa State (MM5I), and Scripps (ECP2) 
were selected for use in the subsequent analyses. 
Future research should examine quantitative 
metrics for objective selection of climate models 
based on reliability.  

Figure 4 presents results for the change factors 
that were developed from the gridded climate 
model output. Change factors (CFs), i.e., the ratio 
of the future rainfall depth to the historical depth, 
are presented for return periods of 2-, 5-, 10-, 25-, 
50-, and 100-years as separate sub-plots, and 
durations of 3-, 6-, 12-, 24-, 48-, and 72-hours 
within each return period plot. For each duration, 
the range of change factors represents the 
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variations between change factors from five 
different RCM-GCM simulations (3 RCMs and 3 
GCMs). Change factors greater than 1.0 represent 

an increase in the rainfall depth in the future; less 
than 1.0 denotes a decrease.  

 

 
Figure 4. Range of change factors relating future (2040–2070) and historical (1970–2000) gridded rainfall depths for 
each model in the culled NARCCAP ensemble and a single grid cell in Pittsburgh; the middle bar in the box represents 
the median of the models, the top and bottom of the box plot represent the 25th and 75th quantiles, the whiskers extend 
to the 90th quantiles, and values outside these ranges are represented as plus signs. 

 
The range of output from the 5 RCM 

simulations is presented as a box plot, where the 
bar in the box represents the median; the top and 
bottom of the box plot represent the 25th and 75th 
quartiles; the whiskers extend to the 90th quantiles; 
and plus signs represent values outside of the 90th 
quantile. 

The median change factor for each duration 
and return period is larger than 1.0, which suggests 
that the depth of extreme precipitation is expected 
to increase in the future for Pittsburgh. With the 
exception of the 3- and 72-hour durations, the 
median change factor tends to increase as the return 
period increases. This is also the case for the 75th 
and 90th quantile change factor for all durations. 
This finding implies that the larger recurrence 

interval storms (e.g., 25-, 50-, 100-year), for the 
same duration, may increase in severity at a sharper 
rate than the more frequently occurring storms 
(e.g., 2-year). It is also interesting to note that for 
the 2-, 5-, and 10-year return periods, the median 
change factor of the 3-hour duration storm is the 
largest of all durations. This is in line with other 
studies that found only short duration storms are 
shown to have consistently higher intensities in the 
future (Kuo et al. 2015; Cheng and AghaKouchak 
2014); however, it also suggests further analysis of 
relative change is needed to produce understanding 
of whether the result has a clear physical 
interpretation and is expected to be reliably 
predicted across downscaling procedures and 
regions.  
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It may be possible to interpret change factors 
as a potential “climate safety factor” that could be 
applied to existing, stationary, depth-duration-
frequency values. Based on these findings, a safety 
factor of 1.3 would encompass the majority of 
model uncertainty for depths of smaller return 
periods (e.g., 2 to 10 years); however, a factor of 
1.3 is no longer valid when uncertainty magnifies 
as the return period increases to 25 years and larger. 
Change factors for extreme precipitation will vary 
depending on the duration and return period of the 
event, as well as the climate model, region, and 
future year analyzed; thus, additional studies are 
needed to determine appropriate climate safety 
factors by region, duration, and return period. As 
an alternative to applying a safety factor to existing 
curves, the authors recommend using values from 

updated, non-stationary, depth- or intensity-
duration-frequency curves. 

Figure 5 presents the range of rainfall depths 
expected for the future period (2040 – 2070) based 
on the change factor method, for the previously 
listed durations and return periods. Change factors 
(reported in Figure 4) as less than 1.0 were 
converted to 1.0 for this analysis based on 
recommendations from the Canadian Standards 
Association, which state that beneficial aspects of 
climate change that allow for a reduction in design 
capacity should be neglected due to the inherent 
risks and costs that could arise from under-design 
(CSA 2012). When all models agree on findings 
suggesting change factors less than 1.0, this 
assumption should be reconsidered. To exemplify 
how rainfall depth changes with respect to the 

Figure 5. Updated DDF curves in Pittsburgh using change factor for the future period (2040–2070); the 
uncertainty is represented as the shaded grey area; the median is shown as the thin, dark, solid line; and the 75th 
quantile is shown as the thin, light, dashed line; the historical values (1970–2000) are shown as the thick, solid 
lines with markers; precipitation values in each plot, from bottom to top, respectively, represent the 25-year 
return period depth for the historical, future median, and future 75th quantile 
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probability of occurrence, results are portrayed for 
a specific duration, as a function of the return 
period. Uncertainty among the five models is 
represented as the grey region on the plot. The 

median of these models is shown as the thin, solid 
line, and the 75th quantile is the thin, dashed line. 
The historical values (1970 – 2000) are shown as 
the thick, dark line. 

Uncertainty of future projections tends to 
increase as return period increases. This 
phenomenon may be due to model variability of 
very extreme events; however, it is likely also a 
result of extrapolation of the GEV distribution to 
recurrence intervals larger than the underlying 30-
year time series. One possible approach to 
overcome this limitation is to generate multiple 
simulations with the same model. Looking 
specifically at the 25-year return period, increases 
with respect to the historical depth are inconsistent 
across durations and do not increase monotonically 
as duration lengthens. The median, future, depth is 
equivalent to a 6%, 21%, and 10% increase for the 
3-, 6-, and 12-hour durations, respectively, and an 
18%, 21%, and a 10% increase for the 24-, 48-, and 
72-hour durations, respectively. The 75th quantile 
depth ranges from a 21% to 41% increase from the 
historical depth, bounded by the 6-hour and 48-
hour durations, respectively. 

The future, median, 25-year depth can be 
extended horizontally right until it intersects with 
the historical line. This reflects the historical return 
period that would have been needed to ensure the 
25-year return period performance in the future. 
For the 3-hour and 6-hour durations, this reflects 
the 35-year and 60-year return period, respectively; 
for 12-hour and 24-hour, it is about the 50-year and 
85-year depths, and equal to or greater than the 
100-year return period for durations 48 hours and 
larger. This finding indicates that merely doubling 
the return period (e.g., 25 year to 50 year) and using 
historical values may be appropriate for shorter 
duration storms (12-hours and less); however, this 
simplified method becomes inapplicable for larger 
duration storms. The historical 25-year depth 
(bottom, horizontal, dotted line) can also be 
extended left until it intersects the future, median 
curve (thin, solid line). The intersection suggests 
that designing for depths with respect to a 
stationary 25-year storm would only provide 
protection from the 7-to 12-year return period 
storms by 2070, for all durations.  

These findings may be applied to the 
selection of the 25-year, 24-hour duration storm for 

use as input to the TR-55 method, commonly used 
in storm water design for calculation of peak 
discharge. To do so, the authors assume the 
following: (i) that the updated curves represent the 
state of the art, (ii) the design structure is located 
on an arterial road of low traffic volume, and (iii) 
the reference year, the year after which 
infrastructure performance is not guaranteed, is 50 
years. Assuming that the current year (2016) is 
equal to the year of conception of the project, the 
associated calendar year needed to describe the 
expected rainfall depth in the reference year is 
2066, which falls within the future period evaluated 
in this analysis. The storm water structure 
represents a situation of low risk (due to placement 
on a low-volume arterial); thus, the authors 
recommend selection of the median depth of 105 
mm for use as input to the TR-55 method.  

 
Conclusions 

 

This study presented a framework that may be used 
as a guide for agencies and engineers to update 
current infrastructure design standards to 
incorporate future, non-stationary trends. The 
framework begins by defining and understanding 
the existing requirements of the engineering 
application, and then discusses how to use this 
information to select and extract the most 
appropriate climate model source, and manage the 
associated model performance and uncertainty. 
The final steps examine options for adjusting 
model output for required temporal or spatial 
resolution of the existing engineering technique, 
and how to incorporate results into engineering 
practice by accounting for uncertainty, risk levels, 
and non-stationarity. 

The general framework was applied to the 
updating of depth-duration-frequency (DDF) 
curves for a case study of Pittsburgh, Pennsylvania. 
Historical curves (recreated for the period from 
1970 to 2000) were updated (for the future period 
of 2040 – 2070) using a change-factor approach. 
Change factors were developed using five 
historical and future regional climate model 
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simulations from NARRCAP, after climate model 
simulations were assessed for performance using 
historical rainfall data. The median change factor 
for each duration (3-, 6-, 12-, 24-, 48-, 72-hr) and 
return period (2-, 5-, 10-, 25-, 50-, 100-year) storm 
is larger than 1.0, which suggests that the depth of 
extreme precipitation is expected to increase in the 
future for Pittsburgh. Furthermore, a change-factor 
of 1.3 encompasses the majority of climate model 
uncertainty for rainfall depths of smaller return 
periods (2 to 10-years); however, this value may 
not be appropriate as uncertainty magnifies for 
lower frequency storms (25-year and above).  

Results for the updated DDF curves indicate 
that merely doubling the return period (e.g., going 
from the 25-year to the 50-year frequency) and 
using historical curves may be appropriate for 
shorter duration storms (12-hours and less); 
however, this simplified method becomes 
inapplicable for larger duration storms. Similarly, 
results imply that designing for a rainfall depth 
equivalent to the future (2040-2070), median 25-
year depth is comparable to designing for the 
historical (1970 – 2000) 50 to 100+ year depths, 
depending on the storm duration. If instead the 
designer selected a 25-year depth from the 
historical curve, this would be equivalent to the 7-
to 12-year return period depths of the future, 
median value for various duration storms.  

While future climate change is expected to 
introduce significant non-stationary changes and 
uncertainty, it is important to put these results into 
perspective of historical uncertainties. The authors 
used the years from 1970 to 2000 as the period of 
historical reference (since these dates coincided 
with the output available from the climate models); 
however, using this 30-year window as the sole 
basis for recreating historical curves introduces 
many challenges that were not addressed in this 
study. This historical period was assumed to be 
stationary; however, it is plausible that non-
stationary trends in rainfall existed at this time 
(DeGaetano 2009). Non-stationary trends in 
historical data, as well as the spatial and temporal 
distribution of observations (e.g., (Barros et al. 
2014)) could influence existing uncertainties 
associated with the empirical estimation of return 
period depths using GEV distributions, especially 
for return periods larger than the number of years 
of historical record. Given these factors, shifting or 

extending the historical reference period has the 
potential to considerably alter the expected change 
in the future period. Thus historical reference 
periods and analyses should be selected with these 
factors in mind.  

 
Recommendations and Future Work 
 

Based on the results of the framework 
presented, and the ASCE initial guidance for 
adapting infrastructure and practice to a changing 
climate (Olsen 2015), the following information 
should be considered by engineers working with 
climate output for resiliency applications:  
• Match intended engineering application with 

the appropriate climate model source; 
• Different climate model sources require 

various amounts of effort for data extraction 
and preparation; 

• Climate models have various levels of skill at 
representing historical mean and extreme 
statistical metrics and engineers need to 
understand the major issues and uncertainties 
involved; 

• Create an ensemble and be transparent about 
assumptions; 

• Test robustness of designs to extremes and 
alternative scenarios; 

• Discuss tradeoffs and uncertainties in risk, 
resiliency, performance, and costs with 
stakeholders; 

• Design for low-regret, adaptability, and 
robustness, and revisit designs when new 
information is available. 

Because of stakeholder desires for 
enhanced resiliency to climate impacts, engineers 
will need to be familiar with choosing and 
incorporating climate change projections into 
planning and design. However, for engineering 
practitioners constrained by time and resources, it 
may not be feasible to expend the effort required 
for the detailed analyses described here. There is a 
need for collaboration across agencies and the 
research communities to serve as ad-hoc or 
standing boundary organizations that translate 
climate projections into relevant engineering 
information. Duties of these translational 
organizations may include providing rigorous 
standards for interpretation of climate data, 
understanding the utility of increasing the number 
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of models considered in an ensemble, development 
of a single, simplified user interface that accesses 
all downscaled data sources, and tools that 
automatically post-process data based on rigorous 
standards.  
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