Ecosystems are interconnected, and ecological processes frequently transcend the physical boundaries that define them. Fluxes of energy, matter, and organisms not only form important ecosystem processes within but also between ecosystems. However, the role of biological drivers in simultaneously supporting multiple ecosystem processes at the interface between aquatic and terrestrial ecosystems (that is, aquatic-terrestrial ecosystem processes) remains poorly understood, both locally and across regions. To assess the relative importance of riparian forests, detritus consumers and leaf litter mixing on different ecosystem processes of freshwater detrital food webs, we used leaf litter bags to subsidise local terrestrial leaf litter to forested and non-forested headwater stream sites in a temperate and tropical region. We also manipulated macroinvertebrate access and the composition of leaf litter mixtures. We measured three key aquatic-terrestrial ecosystem processes: biomass accrual of aquatic fungi, nitrogen loss, and decomposition rates of local leaf litter. Across both temperate and tropical streams, ecosystem multifunctionality, that is, the simultaneous sustaining of these processes, was positively associated with macroinvertebrates and riparian forests but not with leaf litter mixing. Especially leaf litter nitrogen loss and decomposition rates were consistently higher when macroinvertebrates had access across all leaf litter species. Decomposition rates were also positively associated with the other ecosystem processes. These findings highlight consistent, cross-regional effects of riparian forests and macroinvertebrate detritivores on freshwater detrital food webs. In a rapidly changing world, understanding ecosystem processes in headwater streams demands a holistic view that transcends ecosystem borders and incorporates cross-ecosystem interactions.