Department Environmental Chemistry

Environmental Chemistry Stable Isotope Lab

The research group of the Environmental Chemistry Stable Isotope Lab studies how organic chemicals react in natural and engineered environments. Our goal is to provide the fundamental knowledge on chemical mechanisms of transformation that enables one to rationalise observations of pollutant dynamics and describe interactions of organic compounds in biological and abiotic systems quantitatively. We specifically aim at bridging the interface between basic and user-inspired research questions by applying process-based information to assess the fate of chemicals in diverse environmental settings ranging from contaminated soils and sediments to water treatment facilities.

Our scientific approach combines the experimental study of the rates and pathways of (bio)chemical reactions of organic pollutants from the molecular to the field scale with specific characterization of properties and reactivities of the environmental phases such as enzymes and minerals which catalyze these processes. The tools applied in our studies cover different types of mass spectrometry to quantify the kinetics, isotope effects, and product of (bio)chemical reactions, electrochemical and spectroscopic techniques for the description of apparent thermodynamic properties of minerals, as well as quantum-chemistry based computations to reconcile theory with experiment.

Contact

PD Dr. Thomas Hofstetter Head of Department Tel. +41 58 765 5076 Send Mail

Latest publications

Melsbach, A.; Torrentó, C.; Ponsin, V.; Bolotin, J.; Lachat, L.; Prasuhn, V.; Hofstetter, T. B.; Hunkeler, D.; Elsner, M. (2020) Dual-element isotope analysis of desphenylchloridazon to investigate its environmental fate in a systematic field study: a long-term lysimeter experiment, Environmental Science and Technology, 54(7), 3929-3939, doi:10.1021/acs.est.9b04606, Institutional Repository
Berens, M. J.; Hofstetter, T. B.; Bolotin, J.; Arnold, W. A. (2020) Assessment of 2,4-dinitroanisole transformation using compound-specific isotope analysis after in situ chemical reduction of iron oxides, Environmental Science and Technology, 54(9), 5520-5531, doi:10.1021/acs.est.9b07616, Institutional Repository
Bopp, C. E.; Kohler, H. P. E.; Hofstetter, T. B. (2020) Enzyme kinetics of organic contaminant oxygenations, Chimia, 74(3), 108-114, doi:10.2533/chimia.2020.108, Institutional Repository
Aeppli, M.; Kaegi, R.; Kretzschmar, R.; Voegelin, A.; Hofstetter, T. B.; Sander, M. (2019) Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite, Environmental Science and Technology, 53(7), 3568-3578, doi:10.1021/acs.est.8b07190, Institutional Repository

Team members

Nora Bernet PhD Student Tel. +41 58 765 5985 Send Mail
Jakov Bolotin Technician Tel. +41 58 765 5246 Send Mail
Xochitl Graf Master student Tel. +41 58 765 5072 Send Mail
Dr. Enric Petrus Postdoctoral Scientist Tel. +41 58 765 5545 Send Mail
Dr. Michael Stravs Mass Spectrometry Data Scientist Tel. +41 58 765 5781 Send Mail
Chloé Udressy Scientific assistant Tel. +41 58 765 6434 Send Mail

Current projects

New proxies for ecosystem metabolism
Contaminant oxygenating can be associated unproductive O2 activation
The degradation of munition compounds can be assessed with CSIA
Iron-containing clay minerals exhibit unusual redox buffering capabilities