Department Fish Ecology and Evolution

Eco-Evolutionary Dynamics

My group studies evolution as a contemporary ecological and ecosystem process. We are interested in the ecological dynamics of natural selection, and the reciprocal interactions among ecological, ecosystem, and evolutionary dynamics.

Feedbacks between phenotypic evolution and ecosystem dynamics - Feedbacks are central to understanding evolving biological systems. In aquatic systems, we study how contemporary trait evolution of predators (e.g. threespine stickleback) can affect community structure (of prey and non-prey) and the functioning of ecosystems (e.g. habitat structure, nutrient cycling, productivity). Such organisms-mediated ecosystem effects can feedback to affect selection gradients and evolutionary responses.

Evolution and the resilience of ecosystems  - Interactions between ecological and evolutionary processes are fundamental for understanding the balance of feedbacks that govern ecosystem stability and resilience to environmental change. Using pond and mesocosm experiments, we study how species interactions and biodiversity affect the resilience of aquatic system to perturbations (e.g. nutrient pollution).

Evolution of the organism-environment interaction - All living organisms evolve in a reciprocal interaction with their environment. The evolution of phenotypic plasticity is an important component of this interaction. In aquatic organisms, we study both the causes and consequences of plasticity. In isopods, cryptic pigmentation is a developmentally plastic trait, whose evolution is likely mediated by predation, resources, and habitat structure. In stickleback, trait plasticity can have effects on ecosystems that are independent of the genetic background of the population.

The community context of evolution (Greenland) - Contemporary evolution in natural populations is shaped by the interplay of abiotic environments and species interactions. It is the structure and composition of communities that defines ecological dynamics of natural selection. We have recently begun to study the community context of evolution and adaptation in freshwater ecosystems (lakes and streams) on the Southern Peninsula of Greenland. The lakes of Greenland are inhabited by only two fish species (threespine stickleback and char), and so there are a limited number of food web configurations (e.g. only one species, both species, or neither species). We are interested in how this community context (i.e. presence or absence of Char) affects the evolution of interactions between stickleback and their prey.

Team

Leighton Rebecca King PhD Student Tel. +41 58 765 2188 Send Mail
Zixin Li Tel. +41 58 765 2154 Send Mail
Dr. Hanna Rosinger Postdoctoral researcher Tel. +41 58 765 2270 Send Mail
Danina Schmidt Tel. +41 58 765 2126 Send Mail

Publications

Hudson, C. M.; Cuenca Cambronero, M.; Moosmann, M.; Narwani, A.; Spaak, P.; Seehausen, O.; Matthews, B. (2023) Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds, Journal of Evolutionary Biology, 36(8), 1166-1184, doi:10.1111/jeb.14194, Institutional Repository
Moosmann, M.; Hudson, C. M.; Seehausen, O.; Matthews, B. (2023) The phenotypic determinants of diet variation between divergent lineages of threespine stickleback, Evolution, International Journal of Organic Evolution, 77(1), 13-25, doi:10.1093/evolut/qpac021, Institutional Repository
Twining, C. W.; Shipley, J. R.; Matthews, B. (2022) Climate change creates nutritional phenological mismatches, Trends in Ecology and Evolution, 37(9), 736-739, doi:10.1016/j.tree.2022.06.009, Institutional Repository
Shipley, J. R.; Twining, C. W.; Mathieu-Resuge, M.; Parmar, T. P.; Kainz, M.; Martin-Creuzburg, D.; Weber, C.; Winkler, D. W.; Graham, C. H.; Matthews, B. (2022) Climate change shifts the timing of nutritional flux from aquatic insects, Current Biology, 32(6), 1342-1349, doi:10.1016/j.cub.2022.01.057, Institutional Repository
Chaparro Pedraza, P. C.; Matthews, B.; de Meester, L.; Dakos, V. (2021) Adaptive evolution can both prevent ecosystem collapse and delay ecosystem recovery, American Naturalist, 198(6), E186-E197, doi:10.1086/716929, Institutional Repository
Moosmann, M.; Cuenca-Cambronero, M.; De Lisle, S.; Greenway, R.; Hudson, C. M.; Lürig, M.; Matthews, B. (2021) On the evolution of trophic position, Ecology Letters, 24(12), 2549-2562, doi:10.1111/ele.13888, Institutional Repository
Twining, C. W.; Bernhardt, J. R.; Derry, A. M.; Hudson, C. M.; Ishikawa, A.; Kabeya, N.; Kainz, M. J.; Kitano, J.; Kowarik, C.; Ladd, S. N.; Leal, M. C.; Scharnweber, K.; Shipley, J. R.; Matthews, B. (2021) The evolutionary ecology of fatty-acid variation: implications for consumer adaptation and diversification, Ecology Letters, 24(8), 1709-1731, doi:10.1111/ele.13771, Institutional Repository

Current projects

In this project we are interested in which traits govern the efficiency of stickleback foraging in different ecological contexts.
20,000 years of evolution and ecosystem dynamics in the world’s largest tropical lake reconstructed from sediment cores, fossils, and ancient DNA.
Interactive effects of diet and nutrition on phenotypic plasticity and adaptation
Myvatn threespine stickleback as a model
New tools to monitor changes in ecosystem conditions and to quantify genetic changes of populations in (semi-)natural environments to predict how human mediated environmental change will influence stability and resilience of ecosystems.
how does the spatio-temporal variation in the availability and quality of prey affect predators foraging on aquatic and terrestrial resources?