Staff

Carlo Albert

Extbase Variable Dump
'fileadmin/user_upload/tx_userprofiles/profileImages/albertca.jpg' (64 chars)

About Me

Head of the group Mathematical Methods in Environmental Research, at the  Department of Systems Analysis, Integrated Assessment and Modelling

Education

Ph.D. in Theoretical Physics, Dr. Phys. ETH

M.Sc. in Mathematics, Dipl. Math. ETH

Research

Modelling of environmental systems
I apply methods from statistical physics, nonlinear systems theory and statistics to detect and model predictable features of complex environmental systems. Of particular interest is a faithful quantification of uncertainty.


Bayesian Data Science
Quantifying the parametric uncertainty of a model that needs to be calibrated to data is a computationally hard problem, in particular, if the model is slow or stochastic. Statistical physics and non-equilibrium thermodynamics offer some great tools to make parameter inference with stochastic models more efficient. Mechanistic emulators are an efficient way of speeding up slow simulators and make them amenable to simulation-intense tasks such as parameter inference.


Courses   Summer School in Environmental Systems Analysis

Links  Google Scholar 

[[ element.title ]]

[[ element.title ]]

[[ element.title ]]

Publications

[[item.title]]
Dirmeier, S., Albert, C., & Perez-Cruz, F. (2025). Simulation-based Inference for high-dimensional data using surjective sequential neural likelihood estimation. In S. Chiappa & S. Magliacane (Eds.), Proceedings of machine learning research: Vol. 286. Proceedings of the 41st conference on uncertainty in artificial intelligence (UAI 2025) (pp. 1039-1050). Rio de Janeiro: ML Research Press. , Institutional Repository
Lavender, E., Scheidegger, A., Albert, C., Biber, S. W., Illian, J., Thorburn, J., … Moor, H. (2025). Particle algorithms for animal movement modelling in receiver arrays. Methods in Ecology and Evolution, 16(8), 1808-1819. doi:10.1111/2041-210X.70028, Institutional Repository
Lavender, E., Scheidegger, A., Albert, C., Biber, S. W., Illian, J., Thorburn, J., … Moor, H. (2025). patter: particle algorithms for animal tracking in R and Julia. Methods in Ecology and Evolution, 16(8), 1609-1616. doi:10.1111/2041-210X.70029, Institutional Repository
Ulzega, S., Beer, J., Ferriz-Mas, A., Dirmeier, S., & Albert, C. (2025). Shedding light on the solar dynamo using data-driven Bayesian parameter inference. Astrophysical Journal, 992(1), 61 (10 pp.). doi:10.3847/1538-4357/adfec3, Institutional Repository
Bassi, A., Höge, M., Mira, A., Fenicia, F., & Albert, C. (2024). Learning landscape features from streamflow with autoencoders. Hydrology and Earth System Sciences, 28(22), 4971-4988. doi:10.5194/hess-28-4971-2024, Institutional Repository
Bacci, M., Sukys, J., Reichert, P., Ulzega, S., & Albert, C. (2023). A comparison of numerical approaches for statistical inference with stochastic models. Stochastic Environmental Research and Risk Assessment, 37(8), 3041-3061. doi:10.1007/s00477-023-02434-z, Institutional Repository
Dal Molin, M., Kavetski, D., Albert, C., & Fenicia, F. (2023). Exploring signature-based model calibration for streamflow prediction in ungauged basins. Water Resources Research, 59(7), e2022WR031929 (32 pp.). doi:10.1029/2022WR031929, Institutional Repository
Ulzega, S., & Albert, C. (2023). Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model. Hydrology and Earth System Sciences, 27(15), 2935-2950. doi:10.5194/hess-27-2935-2023, Institutional Repository
Höge, M., Scheidegger, A., Baity-Jesi, M., Albert, C., & Fenicia, F. (2022). Improving hydrologic models for predictions and process understanding using neural ODEs. Hydrology and Earth System Sciences, 26(19), 5085-5102. doi:10.5194/hess-26-5085-2022, Institutional Repository
Ulzega, S., Albert, C., Perez-Cruz, F., Ozdemir, F., & Mira, A. (2022). Learning summary statistics for Bayesian inference with autoencoders. SciPost Physics Core, 5(3), 043 (16 pp.). doi:10.21468/SciPostPhysCore.5.3.043, Institutional Repository
Albert, C., Ferriz-Mas, A., Gaia, F., & Ulzega, S. (2021). Can stochastic resonance explain recurrence of Grand Minima?. Astrophysical Journal Letters, 916(2), L9 (5 pp.). doi:10.3847/2041-8213/ac0fd6, Institutional Repository
Held, J., Lorimer, T., Pomati, F., Stoop, R., & Albert, C. (2020). Second-order phase transition in phytoplankton trait dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(5), 053109 (9 pp.). doi:10.1063/1.5141755, Institutional Repository
Ramgraber, M., Albert, C., & Schirmer, M. (2019). Data assimilation and online parameter optimization in groundwater modeling using nested particle filters. Water Resources Research, 55, 9724-9747. doi:10.1029/2018WR024408, Institutional Repository
Fenicia, F., Kavetski, D., Reichert, P., & Albert, C. (2018). Signature-domain calibration of hydrological models using Approximate Bayesian Computation: empirical analysis of fundamental properties. Water Resources Research, 54(6), 3958-3987. doi:10.1002/2017WR021616, Institutional Repository
Kavetski, D., Fenicia, F., Reichert, P., & Albert, C. (2018). Signature-domain calibration of hydrological models using Approximate Bayesian Computation: theory and comparison to existing applications. Water Resources Research, 54(6), 4059-4083. doi:10.1002/2017WR020528, Institutional Repository
Machac, D., Reichert, P., Rieckermann, J., Del Giudice, D., & Albert, C. (2018). Accelerating Bayesian inference in hydrological modeling with a mechanistic emulator. Environmental Modelling and Software, 109, 66-79. doi:10.1016/j.envsoft.2018.07.016, Institutional Repository
Carbajal, J. P., Leitão, J. P., Albert, C., & Rieckermann, J. (2017). Appraisal of data-driven and mechanistic emulators of nonlinear simulators: the case of hydrodynamic urban drainage models. Environmental Modelling and Software, 92, 17-27. doi:10.1016/j.envsoft.2017.02.006, Institutional Repository
Held, J., Lorimer, T., Albert, C., & Stoop, R. (2017). Hebbian learning clustering with Rulkov neurons. In G. Mantica, R. Stoop, & S. Stramaglia (Eds.), Springer proceedings in physics: Vol. 191. Emergent complexity from nonlinearity, in physics, engineering and the life sciences (pp. 127-141). doi:10.1007/978-3-319-47810-4_11, Institutional Repository
Albert, C., Ulzega, S., & Stoop, R. (2016). Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation. Physical Review E, 93(4), 1-8. doi:10.1103/PhysRevE.93.043313, Institutional Repository
Albert, C., Vogel, S., & Ashauer, R. (2016). Computationally efficient implementation of a novel algorithm for the General Unified Threshold model of Survival (GUTS). PLoS Computational Biology, 12(6), 1-19. doi:10.1371/journal.pcbi.1004978, Institutional Repository
Ashauer, R., Albert, C., Augustine, S., Cedergreen, N., Charles, S., Ducrot, V., … Preuss, T. G. (2016). Modelling survival: exposure pattern, species sensitivity and uncertainty. Scientific Reports, 6, 29178 (11 pp.). doi:10.1038/srep29178, Institutional Repository
Del Giudice, D., Albert, C., Rieckermann, J., & Reichert, P. (2016). Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation. Water Resources Research, 52(4), 3162-3186. doi:10.1002/2015WR017871, Institutional Repository
Machac, D., Reichert, P., & Albert, C. (2016). Emulation of dynamic simulators with application to hydrology. Journal of Computational Physics, 313(May), 352-366. doi:10.1016/j.jcp.2016.02.046, Institutional Repository
Machac, D., Reichert, P., Rieckermann, J., & Albert, C. (2016). Fast mechanism-based emulator of a slow urban hydrodynamic drainage simulator. Environmental Modelling and Software, 78, 54-67. doi:10.1016/j.envsoft.2015.12.007, Institutional Repository
Stoop, R., Kanders, K., Lorimer, T., Held, J., & Albert, C. (2016). Big data naturally rescaled. Chaos, Solitons & Fractals, 90, 81-90. doi:10.1016/j.chaos.2016.02.035, Institutional Repository
Albert, C., Künsch, H. R., & Scheidegger, A. (2015). A simulated annealing approach to approximate Bayes computations. Statistics and Computing, 25(6), 1217-1232. doi:10.1007/s11222-014-9507-8, Institutional Repository
Del Giudice, D. (2015). Improving output and input statistical error descriptions in urban hydrological modeling (Doctoral dissertation). doi:10.3929/ethz-a-010536371, Institutional Repository
Del Giudice, D., Reichert, P., Bareš, V., Albert, C., & Rieckermann, J. (2015). Model bias and complexity - understanding the effects of structural deficits and input errors on runoff predictions. Environmental Modelling and Software, 64, 205-214. doi:10.1016/j.envsoft.2014.11.006, Institutional Repository
Abreu, J. A., Albert, C., Beer, J., Ferriz-Mas, A., McCracken, K. G., & Steinhilber, F. (2014). Response to: "Critical analysis of a hypothesis of the planetary tidal influence on solar activity" by S. Poluianov and I. Usoskin. Solar Physics, 289(6), 2343-2344. doi:10.1007/s11207-014-0473-2, Institutional Repository
Glüge, S., Pomati, F., Albert, C., Kauf, P., & Ott, T. (2014). The challange of clustering flow cytometry data from phytoplankton in lakes. In V. M. Mladenov & P. C. Ivanov (Eds.), Communications in computer and information science: Vol. 438. Nonlinear dynamics of electronic systems. 22nd international conference, NDES 2014, Albena, Bulgaria, July 4-6, 2014. Proceedings (pp. 379-386). doi:10.1007/978-3-319-08672-9_45, Institutional Repository
Rinderknecht, S. L., Albert, C., Borsuk, M. E., Schuwirth, N., Künsch, H. R., & Reichert, P. (2014). The effect of ambiguous prior knowledge on Bayesian model parameter inference and prediction. Environmental Modelling and Software, 62, 300-315. doi:10.1016/j.envsoft.2014.08.020, Institutional Repository
Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., & Rieckermann, J. (2013). Berücksichtigung von systematischen Modellabweichungen in der Kanalnetzsimulation. In Gewässerschutz bei Regenwetter – Gemeinschaftsaufgabe für Stadtplaner, Ingenieure und Ökologen (pp. 166-170). Dübendorf: Eawag. , Institutional Repository
Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., & Rieckermann, J. (2013). Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences, 17(10), 4209-4225. doi:10.5194/hess-17-4209-2013, Institutional Repository
Albert, C. (2012). A generic dynamic emulator. In NDES 2012; nonlinear dynamics of electronic systems (pp. 278-281). Wolfenbüttel: Institute of Electrical and Electronics Engineers Inc. , Institutional Repository
Albert, C. (2012). A mechanistic dynamic emulator. Nonlinear Analysis: Real World Applications, 13(6), 2747-2754. doi:10.1016/j.nonrwa.2012.04.003, Institutional Repository
Albert, C., Ashauer, R., Künsch, H. R., & Reichert, P. (2012). Bayesian experimental design for a toxicokinetic-toxicodynamic model. Journal of Statistical Planning and Inference, 142(1), 263-275. doi:10.1016/j.jspi.2011.07.014, Institutional Repository
Ashauer, R., Agatz, A., Albert, C., Ducrot, V., Galic, N., Hendriks, J., … Preuss, T. G. (2011). Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environmental Toxicology and Chemistry, 30(11), 2519-2524. doi:10.1002/etc.639, Institutional Repository
Jager, T., Albert, C., Preuss, T. G., & Ashauer, R. (2011). General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environmental Science and Technology, 45(7), 2529-2540. doi:10.1021/es103092a, Institutional Repository
Albert, C., Bleile, B., & Fröhlich, J. (2010). Batalin-Vilkovisky integrals in finite dimensions. Journal of Mathematical Physics, 51(1), 015213 (31 pp.). doi:10.1063/1.3278524, Institutional Repository
Calogovic, J., Albert, C., Arnold, F., Beer, J., Desorgher, L., & Flueckiger, E. O. (2010). Sudden cosmic ray decreases: no change of global cloud cover. Geophysical Research Letters, 37, 1-5. doi:10.1029/2009GL041327, Institutional Repository
[[item.title]]
Ulzega, S.; Beer, J.; Ferriz-Mas, A.; Dirmeier, S.; Albert, C. (2025) Shedding light on the solar dynamo using data-driven Bayesian parameter inference, Astrophysical Journal, 992(1), 61 (10 pp.), doi:10.3847/1538-4357/adfec3, Institutional Repository
Bassi, A.; Höge, M.; Mira, A.; Fenicia, F.; Albert, C. (2024) Learning landscape features from streamflow with autoencoders, Hydrology and Earth System Sciences, 28(22), 4971-4988, doi:10.5194/hess-28-4971-2024, Institutional Repository
Ulzega, S.; Albert, C.; Perez-Cruz, F.; Ozdemir, F.; Mira, A. (2022) Learning summary statistics for Bayesian inference with autoencoders, SciPost Physics Core, 5(3), 043 (16 pp.), doi:10.21468/SciPostPhysCore.5.3.043, Institutional Repository
Albert, C.; Ferriz-Mas, A.; Gaia, F.; Ulzega, S. (2021) Can stochastic resonance explain recurrence of Grand Minima?, Astrophysical Journal Letters, 916(2), L9 (5 pp.), doi:10.3847/2041-8213/ac0fd6, Institutional Repository
Held, J.; Lorimer, T.; Pomati, F.; Stoop, R.; Albert, C. (2020) Second-order phase transition in phytoplankton trait dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(5), 053109 (9 pp.), doi:10.1063/1.5141755, Institutional Repository
Albert, C.; Ulzega, S.; Stoop, R. (2016) Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation, Physical Review E, 93(4), 1-8, doi:10.1103/PhysRevE.93.043313, Institutional Repository
Machac, D.; Reichert, P.; Albert, C. (2016) Emulation of dynamic simulators with application to hydrology, Journal of Computational Physics, 313(May), 352-366, doi:10.1016/j.jcp.2016.02.046, Institutional Repository
Albert, C.; Vogel, S.; Ashauer, R. (2016) Computationally efficient implementation of a novel algorithm for the General Unified Threshold model of Survival (GUTS), PLoS Computational Biology, 12(6), 1-19, doi:10.1371/journal.pcbi.1004978, Institutional Repository
Albert, C.; Künsch, H. R.; Scheidegger, A. (2015) A simulated annealing approach to approximate Bayes computations, Statistics and Computing, 25(6), 1217-1232, doi:10.1007/s11222-014-9507-8, Institutional Repository

[[ element.title ]]

Files

[[ element.title ]]

Address

E-Mail: carlo.albert@eawag.ch
Phone: +41 58 765 5244
Fax: +41 58 765 5802
Address: Eawag
Überlandstrasse 133
8600 Dübendorf
Office: FC D02

[[ element.title ]]

[[ element.title ]]

Expert on

modeling, data science

[[ element.title ]]

[[ element.title ]]

[[ element.title ]]