Department Environmental Toxicology


Welcome to the Bioanalytics Group. We are part of the Environmental Toxicology Department at Eawag. Our work aims to develop and apply cutting-edge bioanalytics methods to decipher the molecular mechanisms behind the adaptive responses and adverse effects of chemicals and other stressors in aquatic organisms. We strive to apply the accumulated knowledge and experience to (i) support the use of ‘-omics’ data in chemical risk assessment and (ii) guide the development of novel alternative (non-animal) toxicity testing assays that could offer integration of stressor signals across several molecular pathways and improved relevance for higher-level organism responses.

To characterize the molecular baselines and their perturbation by chemicals and other stressors, we use an array of biochemical and molecular biology techniques, with the most emphasis placed on mass spectrometry-based methods for measuring proteins and metabolites. We carry out both global, i.e. ‘-omics’, type of analyses, as well as targeted, i.e. hypothesis-driven, studies focused on individual proteins and metabolites of interest. We also develop approaches to monitor dynamics of phosphorylation-based regulatory signaling.

Among the diversity of aquatic inhabitants, we focus mostly on fish and use diverse model systems to study them, ranging from cell cultures to embryos to adults. We also collaborate with other groups to investigate aquatic organisms representing other trophic levels, for example, phytoplankton.

Whenever possible, we seek to correlate the observed molecular responses with higher-level adverse outcomes, such as cellular proliferation, growth, or animal behavior, positioned along the adverse outcome pathway (AOP) continuum. Organizing and analyzing knowledge according to the AOP framework supports interpretation of ‘-omics’ data and identification of promising alternative toxicity assays for further development of risk assessment strategies.

Latest publications

Gerassimidou, S., Lanska, P., Hahladakis, J. N., Lovat, E., Vanzetto, S., Geueke, B., … Iacovidou, E. (2022). Unpacking the complexity of the PET drink bottles value chain: a chemicals perspective. Journal of Hazardous Materials, 430, 128410 (18 pp.). doi:10.1016/j.jhazmat.2022.128410, Institutional Repository
Geueke, B., Groh, K. J., Maffini, M. V., Martin, O. V., Boucher, J. M., Chiang, Y. T., … Muncke, J. (2022). Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2022.2067828, Institutional Repository
Groh, K., vom Berg, C., Schirmer, K., & Tlili, A. (2022). Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environmental Science and Technology, 56(2), 707-710. doi:10.1021/acs.est.1c08399, Institutional Repository
Groh, K., Connors, K., Schowanek, D., de Wolf, W., & Sanderson, H. (2022). Environmental assessment and registration of polymers: scientific issues and implementation challenges. SETAC Globe, 23(9) (3 pp.). Retrieved from, Institutional Repository
Mueller, L., Ågerstrand, M., Backhaus, T., Diamond, M. L., Erdelen, W. R., Evers, D., … Schäffer, A. (2022). Policy options to account for multiple chemical pollutants threatening biodiversity. Environmental Science: Advances. doi:10.1039/D2VA00257D, Institutional Repository
Rillig, M. C., Kim, S. W., Schäffer, A., Sigmund, G., Groh, K. J., & Wang, Z. (2022). About "controls" in pollution-ecology experiments in the anthropocene. Environmental Science and Technology, 56(17), 11928-11930. doi:10.1021/acs.est.2c05460, Institutional Repository
Sigmund, G., Ågerstrand, M., Brodin, T., Diamond, M. L., Erdelen, W. R., Evers, D. C., … Groh, K. J. (2022). Broaden chemicals scope in biodiversity targets. Science, 376(6599), 1280. doi:10.1126/science.add3070, Institutional Repository
Taha, H. M., Aalizadeh, R., Alygizakis, N., Antignac, J. P., Arp, H. P. H., Bade, R., … Schymanski, E. L. (2022). The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environmental Sciences Europe, 34, 104 (26 pp.). doi:10.1186/s12302-022-00680-6, Institutional Repository
Zimmermann, L., Scheringer, M., Geueke, B., Boucher, J. M., Parkinson, L. V., Groh, K. J., & Muncke, J. (2022). Implementing the EU chemicals strategy for sustainability: the case of food contact chemicals of concern. Journal of Hazardous Materials, 437, 129167 (11 pp.). doi:10.1016/j.jhazmat.2022.129167, Institutional Repository
Bakker, E., Bleiner, D., & Groh, K. (2021). Perspectives and future directions of the division of analytical sciences of the Swiss Chemical Society. Chimia, 75(5), 455-456. doi:10.2533/chimia.2021.455, Institutional Repository
Leopold, A., Bloor, M., Sanderson, H., Campos, B., Groh, K., Thomas, P., & Posthuma, L. (2021). How SETAC Europe is contributing to the chemicals strategy for sustainability. SETAC Globe, 22(9) (3 pp.). Retrieved from, Institutional Repository
Maffini, M. V., Geueke, B., Groh, K., Carney Almroth, B., & Muncke, J. (2021). Role of epidemiology in risk assessment: a case study of five ortho-phthalates. Environmental Health, 20, 114 (14 pp.). doi:10.1186/s12940-021-00799-8, Institutional Repository
Wang, Z., Wiesinger, H., & Groh, K. (2021). Time to reveal chemical identities of polymers and UVCBs. Environmental Science and Technology, 55(21), 14473-14476. doi:10.1021/acs.est.1c05620, Institutional Repository
Kirla, K. T., Groh, K. J., Poetzsch, M., Banote, R. K., Stadnicka-Michalak, J., Eggen, R. I. L., … Kraemer, T. (2018). Importance of toxicokinetics to assess the utility of zebrafish larvae as model for psychoactive drug screening using meta-chlorophenylpiperazine (mCPP) as example. Frontiers in Pharmacology, 9, 414 (12 pp.). doi:10.3389/fphar.2018.00414, Institutional Repository
Tierbach, A., Groh, K. J., Schönenberger, R., Schirmer, K., & Suter, M. J. F. (2018). Glutathione S-transferase protein expression in different life stages of zebrafish (Danio rerio). Toxicological Sciences, 162(2), 702-712. doi:10.1093/toxsci/kfx293, Institutional Repository
Van den Brink, P. J., Boxall, A. B. A., Maltby, L., Brooks, B. W., Rudd, M. A., Backhaus, T., … van Wensem, J. (2018). Toward sustainable environmental quality: priority research questions for Europe. Environmental Toxicology and Chemistry, 37(9), 2281-2295. doi:10.1002/etc.4205, Institutional Repository


Dr. Ksenia Groh Group Leader Tel. +41 58 765 5182 Send Mail

Team members

Severin Ammann Lab Technician Tel. +41 58 765 6407 Send Mail
Mihai-Ovidiu Degeratu PhD Student Tel. +41 58 765 5697 Send Mail
Dr. Nikolai Huwa Postdoctoral Scientist Tel. +41 58 765 5653 Send Mail
René Schönenberger Lab Technician Tel. +41 58 765 5105 Send Mail
Melissa von Wyl Research associate Tel. +41 58 765 5586 Send Mail

Former team member

Dr. Veysel Demir


Dr. Olga Schubert Research Scientist Tel. +41 58 765 6487 Send Mail

Ongoing project

Global and targeted proteomics provide insights into molecular mechanisms of toxicity.
Studying mTOR pathway to decipher its role in mediating chemical effects on fish cells growth.
This project studies GST enzymes in alternative test models such as zebrafish early life stages and cell lines.