Department Systems Analysis, Integrated Assessment and Modelling

Systems Analysis, Integrated Assessment and Modelling

In SIAM, we develop and apply models and formal techniques in order to understand, demonstrate, and predict the behavior of natural, technical, social and economical systems that pertain to water and other natural resources. Read more

New Publications

Müller, M. F., Rusca, M., Adjei Adams, E., Allaire, M., Blöschl, G., Cabello Villarejo, V., … Rising, J. (2025). Theoretical frameworks on water and society. In F. Tian, J. Wei, M. Haffner, & H. Kreibich (Eds.), Coevolution and prediction of coupled human-water systems. A sociohydrologic synthesis of change in hydrology and society (pp. 23-73). doi:10.1016/B978-0-443-41736-8.00013-0, Institutional Repository
Jiménez, M., Ortiz-Angulo, J., Alonso-Alguacil, P., Pérez-Díaz, B., Camus, P., Cea, L., … Méndez, F. (2025). Evaluación de la inundación compuesta en estuarios acoplando emulación climática-estocástica con herramientas híbridas. In B. Russo, P. López Julián, & A. Acero Oliete (Eds.), VIII jornadas de ingeniería del agua (JIA 2025). La evolución de la gestión de las cuencas hidrográficas frente a los nuevos retos de la sociedad (pp. 123-126). Zaragoza: Escuela Universitaria Politécnica de La Almunia (Universidad de Zaragoza). , Institutional Repository
Sañudo, E., Montalvo, C., Farfán, J., Aranera-Cabrera, R., Montenegro, M., Puertas, J., … Cea, L. (2025). Análisis del rendimiento del sistema de alerta temprana MERLIN: evaluación de sus modelos predictivos de base física. In B. Russo, P. López Julián, & A. Acero Oliete (Eds.), VIII jornadas de ingeniería del agua (JIA 2025). La evolución de la gestión de las cuencas hidrográficas frente a los nuevos retos de la sociedad (pp. 109-112). Zaragoza: Escuela Universitaria Politécnica de La Almunia (Universidad de Zaragoza). , Institutional Repository
Farfán-Durán, J. F., Montalvo, C., Cea, L., & Leitão, J. P. (2025). ¿Y la humedad antecedente? Integrando el cálculo de lluvia neta en modelos subrogados basados en deep learning para la predicción de inundaciones urbanas. In B. Russo, P. López Julián, & A. Acero Oliete (Eds.), VIII jornadas de ingeniería del agua (JIA 2025). La evolución de la gestión de las cuencas hidrográficas frente a los nuevos retos de la sociedad (pp. 74-77). Zaragoza: Escuela Universitaria Politécnica de La Almunia (Universidad de Zaragoza). , Institutional Repository
Mazzoli, A., Reichert, P., Frey, C., Callbeck, C. M., Paulus, T. J., Zopfi, J., & Lehmann, M. F. (2026). A comprehensive porewater isotope model for simulating benthic nitrogen cycling: description, application to lake sediments, and uncertainty analysis. Biogeosciences, 23(1), 283-314. doi:10.5194/bg-23-283-2026, Institutional Repository
Lavender, E., Albert, C., & Scheidegger, A. (2025). Animal geolocation with convolution algorithms in Julia and R via Wahoo.jl. Methods in Ecology and Evolution. doi:10.1111/2041-210x.70185, Institutional Repository

News

November 27, 2025 –

A new combination of data and statistical algorithms makes it possible for the first time to precisely track the movements of animals deep underwater. An initial study of flapper skate on the seabed around Scotland will help to...

A new combination of data and statistical algorithms makes it possible for the first time to precisely track the movements of animals deep underwater. An initial study of flapper skate on the seabed around Scotland will help to develop targeted measures to conserve these Critically Endangered animals and designate suitable protected areas. The results have now been published in Science Advances.

Read more

Projects

Bridging the gap between data science and mechanistic modelling for a better understanding of community composition.
Heterogeneous data platform for operational modeling and forecasting of Swiss lakes in collaboration with the Swiss Data Science Center.
Deep Neural Networks (DNNs) have shown empirical performance but they are still nevertheless a black-box function modeling data
Scalable Bayesian inference framework for uncertainty quantification in stochastic models using thousands of processors in parallel at the Swiss Supercomputing Center and ETH Zurich.

SPUX - High performance environmental data science

Mechanistic modelling of the macroinvertebrate community composition in rivers.
We compare invasions in aquatic and terrestrial ecosystems primarily at large (national) spatial scales and among several higher-level taxa (insects, molluscs, crustaceans, all major vertebrate classes, and plants).
We use machine learning methods to predict the effects of chemicals on aquatic species.
Development of a semi-distributed hydrological model with a “flexible” approach. Testing and comparing of different model structures to combine modeling and experimenting into a learning process.
Exploring the use of machine learning techniques to uncover low-dimensional features within high-dimensional datasets, both simulated and observed